Integration Requiring Multiple Techniques Z ∞ 0 ∞ Z 0 Z lim a→∞ Z 0 a x arctan x dx (1 + x2 )2 x arctan x dx (1 + x2 )2 x arctan x dx (1 + x2 )2 = = x = dx = tan θ. sec2 θ dθ. u = du = θ. dθ. b θ tan θ sec2 θ 2 2 (1 + tan θ) 0 Z b θ tan θ lim sec2 θ b→π/2 0 (sec2 θ)2 Z b θ tan θ lim sec2 θ b→π/2 0 sec4 θ Z b θ tan θ lim b→π/2 0 sec2 θ Z b θ sin θ cos2 θ lim cos θ b→π/2 0 Z b lim θ sin θ cos θ lim dθ = dθ = dθ = dθ = dθ = dθ = b→π/2 b→π/2 0 b Z b 1 θ 2 sin θ − sin2 θ dθ lim 2 b→π/2 0 2 0 b Z θ 1 b1 lim sin2 θ − (1 − cos(2θ)) dθ 2 0 2 b→π/2 2 0 b 1 1 θ sin2 θ − θ − sin(2θ) dθ lim 4 2 b→π/2 2 0 dv v = = sin θ cos θ dθ. 2 1 2 sin θ. = = = = = = 1 1 θ sin2 b − b − sin(2b) − lim 4 2 b→π/2 2 0 1 1 sin2 0 − 0 − sin(0) 2 4 2 π π − 4 8 π . 8 For this approach we need the following. Z x dx = (1 + x2 )2 Z 1 2x dx = 2 (1 + x2 )2 Z 1 u−2 du = 2 = ∞ Z 0 Z lim a→∞ 0 a u = 1 + x2 . du = 2x dx. 1 − u−1 + C 2 1 − + C. 2(1 + x2 ) x arctan x dx (1 + x2 )2 = x arctan x dx (1 + x2 )2 = u = du = arctan x. 1 1+x2 dx. = x dx tan θ. sec2 θ dθ. a Z a − arctan x 1 lim − − dx a→∞ 2(1 + x2 ) 2(1 + x2 )2 0 0 a Z − arctan x 1 b 1 − lim lim − sec2 θ dθ 2 2 2 a→∞ 2(1 + x ) 2 b→π/2 (1 + tan θ) 0 0 a Z − arctan x 1 b 1 − lim lim − sec2 θ dθ 2 θ)2 a→∞ 2(1 + x2 ) 2 (sec b→π/2 0 0 a Z − arctan x 1 b 1 lim − lim − 2 dθ a→∞ 2(1 + x2 ) sec θ b→π/2 2 0 0 a Z b 1 − arctan x + lim cos2 θ dθ lim a→∞ 2(1 + x2 ) 2 b→π/2 0 0 a Z b − arctan x 1 1 lim + lim (1 + cos(2θ)) dθ a→∞ 2(1 + x2 ) 2 b→π/2 0 2 0 b a − arctan x 1 1 lim + lim θ + sin(2θ) a→∞ 2(1 + x2 ) 4 b→π/2 2 0 0 − arctan a 0 lim − + a→∞ 2(1 + a2 ) 2 1 1 lim b + sin(2b) − 0 4 b→π/2 2 = = = = = = = = = = π π − 4 8 π . 8 dv v x = (1+x 2 )2 dx. 1 = − 2(1+x 2) .
© Copyright 2026 Paperzz