C en te en ce Comp u es nc nal Sc tio ie ta r o f E xc el l Aeroelastic Interactions in the Presence of Reflecting Oblique Shockwaves CCAS Review – May 2015 Nathan Boyer and Jack McNamara AFRL Contacts: Dr. M.Visbal Acknowledgements Sponsors: CCAS CPU: DoD HPCMP and OSC C en te en ce Comp u es nc nal Sc tio ie ta r o f E xc el l Introduction • In second year of graduate school under Dr. McNamara • Finished coursework this past semester • Beginning full-time research now • 2nd internship at AFRL/RQ this summer under Dr. Miguel Visbal 2 C en te en ce Comp u es nc nal Sc tio ie ta r o f E xc el l Motivation Reflecting oblique shockwaves … • are common. • cause severe loading conditions. • can incite aeroelastic instabilities. (Visbal 2012, 2014) High Performance High Efficiency Lightweight Structures Flexible Surfaces Aeroelastic Coupling 3 C en te en ce Comp u es nc nal Sc tio ie ta r o f E xc el l Visbal 2012 4 Scope Parameters of Interest • Mach Number • Reynolds Number • Shock Strength (Angle) • Shock Impingement Location • Panel Dimensions • Panel Material Properties • Panel Preload • Boundary Conditions • Cavity Pressure • Turbulence • Three-Dimensionality C en te en ce Comp u es nc nal Sc tio ie ta r o f E xc el l Previous Work on the Topic • Relatively little work has been done to date • OSU and AFRL have pioneered work in this field – S. M. Spottswood, T. Eason, T. Beberniss (AFRL/RQHF) – Gogulapati, Deshmukh, Crowell, McNamara et al. (OSU) – M.Visbal (AFRL/RQVA) 5 C en te en ce Comp u es nc nal Sc tio ie ta r o f E xc l el Previous Work – Spottswood, Eason, Beberniss • Goal: Improve fundamental understanding of structural response to SBLI-induced loads • Carried out wind tunnel experiments at AFRL/RQ RC-19 tunnel at WPAFB (Mach 2.0) • Structural response is sensitive to shock impingement location • Need for continuing experiments and modeling capabilities to understand behavior. • Experiments on-going 6 C en te en ce Comp u es nc nal Sc tio ie ta e r o f E xc ll Previous Work – Gogulapati, McNamara et al. • Computational study using Spottswood, Eason, and Beberniss experiments for validation • Goal: Assess model reduction approaches for prediction of structural response to SBLI Approach: • Mean flow modeled using CFD (RANS) surrogate • TBL load modeled using semi-empirical approach • Structure modeled using nonlinear full and reduced order FEM 7 C en te en ce Comp u es nc nal Sc tio ie ta r o f E xc el l Previous Work – Visbal • Goal: Expand understanding of impinging-shock fluid-structure interactions • Invicid and viscous (laminar) flow using a high-order flow solver at Mach 2 and 2.5 • 2D flexible panel modeled using a non-linear von Karman plate model • Investigated: shock strength, shock impingement location, cavity pressure, dynamic pressure, laminar SBLI 8 C en te en ce Comp u es nc nal Sc tio ie ta r o f E xc el l Previous Work – Visbal • Discovered new aeroelastic instability induced by reflecting shockwaves. • Weak shocks “stiffen” panel and can prevent fluttering. • Strong shocks excite higher-frequency, higher-amplitude flutter at lower dynamic pressures. 𝜆=𝜌↓∞ 𝑢↓∞↑2 𝑎↑3 /𝐷 𝐷=𝐸↓𝑠 ℎ↑3 /12(1−𝜈↑2 ) 𝐸↓𝑠 ≡𝑌𝑜𝑢𝑛𝑔↑′ 𝑠 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 𝑎≡𝑝𝑎𝑛𝑒𝑙 𝑙𝑒𝑛𝑔𝑡ℎ h≡𝑝𝑎𝑛𝑒𝑙 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝛿𝑤≡█■𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙@𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒 9 C en te en ce Comp u es nc nal Sc tio ie ta e r o f E xc ll Current Work – Fluid (No-Shock Case) 𝑅𝑒=120,000 𝑀=2 𝜆=875 • Shockwave is from leading-edge no-slip condition • High-frequency fluctuations are from disturbances in the boundary layer interacting with the flexible panel • Fluid eventually stabilizes 10 C en te en ce Comp u es nc nal Sc tio ie ta e r o f E xc ll Current Work – Panel (No-Shock Case) 𝑆𝑡≈0.4 𝑓≈250𝐻𝑧 for typical values • Unsteadiness decays to steady-state deflection over time • Coupling between panel and fluid is evident. 11 C en te en ce Comp u es nc nal Sc tio ie ta e r o f E xc ll Current Work – Coupling (No-Shock Case) • The panel and fluid evolve towards stability together • One cannot be stable while the other is unstable Overall, the observed response is not a significant cause for concern. 12 C en te en ce Comp u es nc nal Sc tio ie ta e r o f E xc ll Current Work – Fluid (Shock Case) 𝑅𝑒=120,000 𝑝3/𝑝1 =1.8 𝑀=2 𝜆=875 𝑥↓𝑖 =0.5 • The presence of a reflecting shockwave over the panel greatly changes the flow physics • Fluid response is highly unsteady and nonlinear 13 C en te en ce Comp u es nc nal Sc tio ie ta e r o f E xc ll Current Work – Panel (Shock Case) • The presence of a reflecting shockwave causes the panel to behave wildly • High frequency, high amplitude oscillations are a big problem for fatigue 14 C en te en ce Comp u es nc nal Sc tio ie ta e r o f E xc ll Current Work – Coupling (Shock Case) • Irregular response does not decay to steady state • Rather, limit cycle oscillations develop and persist Reflecting shocks could pose serious problems for both structural integrity and flow unsteadiness. 15 C en te en ce Comp u es nc nal Sc tio ie ta r o f E xc el l Research Goals • Understand complex aeroelastic response in the presence of reflecting shockwaves • Explore vast parameter space – Determine parameter impact and influence – Discover (un)desirable configurations Current Path: • Replace finite difference structural solver in FDL2D with finite element structural solver. • Migrate to FDL3D • Couple finite element structural solver into FDL3D • Explore effect of 3-D and turbulence 16
© Copyright 2026 Paperzz