Algebra 2 1.1 to 1.4 Review Name: _______________________________________________ Date: __________________________________ Hour: _______ Describe the interval show using an inequality, set notation, and interval notation (Lesson 1.1). 1. 2. Inequality: Set Notation: Interval Notation: Inequality: Set Notation: Interval Notation: 3. 4. Inequality: Set Notation: Interval Notation: Inequality: Set Notation: Interval Notation: Describe the domain and range of the graph using an inequality, set notation, and interval notation. Then describe the end behavior (Lesson 1.1). 5. 6. 7. Draw the graph of the function with its given domain. Then determine the range using interval notation (Lesson 1.1). 8. f ( x) 2 x 3, Domain : (0,3] 9. g ( x) x 1, Domain : [4,1) Range: __________ Range: __________ 10. g ( x) 3 x 4, Domain : [2, ) 2 Range: __________ Use the graph to find: intervals where the function is increasing and decreasing, the local maximum & minimum values, the zeros, the domain & range, and the end behavior. Use inequalities to describe the intervals. (Lesson 1.2) 11. 12. (-0.8, 0) (1.6, 2) (2.8, 0) Increasing: zeros: Increasing: zeros: Decreasing: Domain: Decreasing: Domain: Local maximum: Range: Local maximum: Range: Local Minimum: E.B.: Local Minimum: E.B.: The graph of f(x) is given. Use transformations to graph the related function g(x). Remember your reference points: (-1, 1), (0, 0) , and (1, 1) 13. g ( x) f ( x 3) 2 14. g ( x) 2 f ( x 4) 1 16. g ( x) 15. g ( x) f (2( x 1)) 3 1 f ( x 3) 3 Let g(x) be the transformation of f(x). Write the rule for the function g(x). 17. Translation 8 units right 18. Vertical stretch by a factor 3, translation up 2 19. Reflection across the x-axis, horizontal stretch by a factor of 2, and a translation left 5 units. 1 20. Horizontal compression by a factor of 3, translation right 2 units and down 3 units. Tell whether each function is one-to-one or many-to-one. Then determine whether the inverse is a function. 21. Function: Domain: Inverse Range: 1 2 3 4 Domain: 22. Function: Range: Domain: -2 1 6 3 9 5 Inverse Range: 2 4 6 8 Domain: Range: Find the inverse of each function. Then graph it. 23. f ( x) x 3 24. f ( x) 2 x 4 1 25. f ( x) x 1 3 4 26. f ( x) x 1 3 Write an equation for the situation, and identify the domain and range in inequality notation. (1.1) 27. Jeremy went on a jog and ran one mile every 8 minutes. He ran for 56 minutes. Write an equation for the distance Jeremy jogged in miles as a function on time in minutes. Function: ________________________________ Domain: __________________________________ Range: ____________________________________
© Copyright 2026 Paperzz