§2-4 RADICAL EXPRESSIONS Definition The nth root of a number a is a number that when raised to the nth power, produces the is the radical and a is the number a. It is written as n a , where n is the index, radicand. For example, Similarly, 4 16 = 2 since 2 4 = 16 and Definition x 6 = x 3 since (x 3 )2 = x 6 . 9 = 3 since 32 = 9 and 3 x 12 = x 4 since (x 4 )3 = x12 . m , where m is the power of the number n m and n represents the nth root of the number. Thus a m n = n a m = (n a ) where a ≥ 0. Rational exponents are exponents of the form 23 13 For example, 27 = 3 27 = 3 and 8 = (3 8) = (2)2 = 4 2 Example 1 Write the expression x 2 3 in radical form. Solution The expression x 2 3 can be written as (x1 3 ) or (x 2 ) . 2 Therefore, x 2 3 can be written in radical form as Example 2 13 ( x ) or 3 2 3 2 x . Simplify the expression 18 − 8 . 18 − 8 = 9⋅ 2 − 4 ⋅ 2 = 3 2 − 2 2 = (3 − 2) 2 = 2 Solution Example 3 Simplify the expression Solution 3 x 7 y5 z6 − 3 x10 y8 z 3 = 3 3 x 7 y5 z6 − 3 x10 y8 z 3 . x 6 ⋅ x ⋅ y 3 ⋅ y 2 ⋅ z 6 − 3 x 9 ⋅ x ⋅ y6 ⋅ y 2 ⋅ z 3 = (x 2 yz2 )3 xy2 − (x 3 y2 z)3 xy2 = ( x 2 yz2 − x 3 y 2 z)3 xy2 = x 2 yz(z − xy)3 xy 2 ( 2 − 3 )( 8 − 4 ). Example 4 Multiply Solution ( 2 − 3 )( 8 − 4 ) = 2 ⋅ 8 − 2 ⋅ 4 − 3 ⋅ 8 + 3⋅ 4 = 16 − 8 − 24 + 12 = 4 − 4 ⋅ 2 − 4 ⋅6 + 4 ⋅ 3 = 4−2 2 −2 6 +2 3 Copyright©2007 by Lawrence Perez and Patrick Quigley §2-4 PROBLEM SET Write each exponential expression as a radical expression. 1. 5 1 2 2. (2x) 1 3 (xy3 ) 3. 3 4 4. − 5x 2 3 5. (a 2 b 4 ) 1 5 Write each radical expression as a exponential expression. 6. 11 7. 5 a 3 8. − 2y 9. 4x x 10. 2 r 4 2s 3 4 9 Simplify each radical expression. 11. 64 12. 16. x 12 17. 3 64 − a12b 4 13. 3 −1 14. 3 −27 15. 18. 3 8x 6 y 9 19. 4 16 r8 20. −27a 9 22. 5 243x15 y 25 23. 25. (x + y)2 26. 3 (x + y)6 27. 29. 2 12 − 3 3 30. a 7−b 7 21. 3 3 5+2 5 28. 3 5−2 5 31. 3 ⋅ 3 16 − 3 2 32. x − 2x x 3 2⋅ 3 36. x+y⋅ x+y 40. 2x 8x 3 34. x⋅ x 35. 37. 6x ⋅ 12x 38. 2 2 39. 45. 64 5 x 25y ⋅ y2 x3 42. 46. 3 x 43. 3y x ⋅ 4 4x y y 27a12 b15 3 x+ x 3 −x 5 y10 24. 33. 41. 25x 2 y4 5 47. x x 3 x 12 44. 5 x 25y 48. 2 ÷ y x3 3 3 4 ab2 3y x ÷ 4 4x y y 49. 3 4 + 2 2 50. 3 4 − 2 2 51. 27 2 +3 12 27 52. 2 3 − 12 3 53. 2 3 + 12 3 54. 27 2 −3 27 12 55. 2 ( 10 + 5) 56. 3( 8 − 6) 57. 2 3− 2 58. 2 3+ 2 59. 3 1 + 60. 3+ 2 3− 2 2 3 − 2+ 5 2− 5 Copyright©2007 by Lawrence Perez and Patrick Quigley §2-4 PROBLEM SOLUTIONS 1. 5 2. 3 2x 3. y 2 ⋅ 4 x 3 y 4. −5⋅ x 6. 111 2 7. a 35 8. −(2y)1 2 9. 4x 13. -1 14. -3 15. 11. 8 12. 4 3 32 2 5. 5 2 10. (2 7 4 )(r)(s 3 4 ) a b 2 3 − xy2 17. −a b 2 18. 2x 2 y 3 19. 2 r2 20. 22. 3x 3 y 5 23. 5x y2 24. 3a 4 b5 25. x + y (x + y)2 27. 5 5 28. 5 29. 3 5 ⋅3 2 32. −x x 33. 2 x 36. x + y 37. 2x 18 38. 2 39. 41. 2 42. 6 x 43. x 2 44. 47. x2 y y3 48. y 2 3x 8x 2 49. 7 2 2 50. 52. − 2 3 3 53. 4 3 3 54. 5 6 55. 6 16. x 21. − 3a 26. 31. 46. 3x 8y 3 6 51. 13 6 56. 2 6−3 2 57. 2 3+2 2 59. 4 3−2 2 60. 2 +5 5 3 34. x x 24 ab 58. 2 4 30. (a − b) 7 35. 3 6 40. 2x 2x 45. 25 y xy2 2 2 2 5 + 10 2 3−2 2 Copyright©2007 by Lawrence Perez and Patrick Quigley
© Copyright 2026 Paperzz