CEGEP CHAMPLAIN - ST. LAWRENCE 201-103-RE: Differential Calculus Patrice Camiré Problem Sheet #26 Higher Derivatives 1. Simplify/rewrite y and then find the corresponding higher derivative. (Hint: Use long division for (c) and (d).) 6x3 − 5x + 1 x2 5 if y = 2x − 3 3x2 − 11x − 12 if y = x+1 x5 − 2x3 + x + 3 x−1 √ if y = ln(x x + 3) (a) Find y (5) if y = (d) Find y (5) if y = (b) Find y (3) (e) Find y (6) (c) Find y (6) √ 4 (f) Find y (4) if y = ln x3 2x + 1 ex 2. Complete the following statements about the graph of the function y = f (x). (a) If y 0 = dy > 0, then the graph of y = f (x) is ... dx (b) If y 0 = dy < 0, then the graph of y = f (x) is ... dx (c) If y 0 = dy = 0, then the graph of y = f (x) is ... dx (d) If y 00 = d 2y > 0, then the graph of y = f (x) is ... dx2 (e) If y 00 = d 2y < 0, then the graph of y = f (x) is ... dx2 3. In each case, find all values of x for which the first derivative is zero or undefined. Moreover, find all values of x for which the second derivative is zero or undefined. (a) y = x2 (x − 1)2 (b) y = x2 x−1 4. (a) Find y (1) if y = x. (x − 3)2 (x + 1)2 (x + 2)3 (d) y = (x − 1)2 (c) y = (e) y = x2 (x − 3)4 (f) y = xe−2x (d) Find y (4) if y = x4 . (b) Find y (2) if y = x2 . (e) Find y (5) if y = x5 . (c) Find y (3) if y = x3 . (f) Find y (n) if y = xn , where n ∈ Z+ . Answers 1. (a) y = 6x − 5x−1 + x−2 and y (5) = (b) y = 5(2x − 3)−1 and y (3) = − 120(5x − 6) x7 240 (2x − 3)4 (c) y = 3x − 14 + 2(x + 1)−1 and y (6) = 1440 (x + 1)7 360 (d) y = x4 + x3 − x2 − x + 3(x − 1)−1 and y (5) = − (x − 1)6 1 2 1 (6) (e) y = ln(x) + ln(x + 3) and y = −60 + 2 x6 (x + 3)6 1 3 8 4 (4) (f) y = 3 ln(x) + ln(2x + 1) + x and y = −6 + −4 2 x4 (2x + 1)4 2. (a) increasing. (b) decreasing. (c) flat. −2x , x = 0, 1 (x − 1)3 2(2x + 1) , x = −1/2, 1 y 00 = (x − 1)4 x(x − 2) (b) y 0 = , x = 0, 2, 1 (x − 1)2 2 y 00 = , x=1 (x − 1)3 8(x − 3) (c) y 0 = , x = 3, −1 (x + 1)3 −16(x − 5) y 00 = , x = 5, −1 (x + 1)4 3. (a) y 0 = 4. (a) 1 (d) concave up. (e) concave down. (x + 2)2 (x − 7) , x = −2, 7, 1 (x − 1)3 54(x + 2) y 00 = , x = −2, 1 (x − 1)4 (d) y 0 = −2x(x + 3) , x = 0, −3, 3 (x − 3)5 √ 6(x2 + 6x + 3) y 00 = , x = −3 ± 6, 3 6 (x − 3) (e) y 0 = (f) y 0 = −e−2x (2x − 1) , x = 1/2 y 00 = 4e−2x (x − 1) , x = 1 (d) 1 · 2 · 3 · 4 (b) 1 · 2 (e) 1 · 2 · 3 · 4 · 5 (c) 1 · 2 · 3 (f) 1 · 2 · · · (n − 1) · (n) = n! We call n! n factorial. Additional Problems 5. (a) Find y (5) if y = xπ . (i) Find y (3) if y = log3 (2x − 1). (b) Find y (2) if y = cos(x3 ). p (c) Find y (3) if y = x2 + 1. √ (d) Find y (3) if y = x. (j) Find y (3) if y = 2−x . (k) Find y (3) if y = cos2 (x). (l) Find y (4) if y = x2 − (e) Find y (3) if y = sin(2x). (f) Find y (2) if y = tan(3x). (m) Find y (3) if y = (g) Find y (3) if y = arctan(−x). 2 1 . x 4x3 − x2 + 3x − 1 . x (n) Find y (2) if y = (3x2 − x + 1)5 . (h) Find y (2) if y = ex . Answers 5. (a) y (5) = π(π − 1)(π − 2)(π − 3)(π − 4)xπ−5 (b) −3x[2 sin(x3 ) + 3x3 cos(x3 )] (c) (d) (x2 −3x + 1)5/2 3 8x5/2 2 (h) 2ex (2x2 + 1) (i) 16 ln(3)(2x − 1)3 (j) − ln3 (2)2−x (k) y (3) = 8 sin(x) cos(x) (e) −8 cos(2x) (l) y (4) = − (f) 18 tan(3x) sec2 (3x) (g) 3x2 ) 2(1 − (x2 + 1)3 (m) y (3) = 24 x5 6 x4 (n) y (2) = 10(3x2 − x + 1)3 (81x2 − 27x + 5)
© Copyright 2026 Paperzz