656 JOURNAL OF THE ELECTROCHEMICAL T h e c u r v e s w e r e o b t a i n e d b y the r e l a x a t i o n m e t h ods, since a n a l y t i c c o m p u t a t i o n is m a d e difficult b y the lack of a p p r o p r i a t e m a t h e m a t i c a l tables. Acknowledgments T h e a u t h o r s w i s h to t h a n k L. E. Q. W a l k e r a n d D. W. G. B a l l e n t y n e for p r o p o s i n g t h e p r o b l e m a n d for m a n y h e l p f u l discussions, Miss M. A. M i l l i d g e for c o m p u t i n g some of t h e c u r v e s , also Miss E. K o w s z y n i s for s u p p l y i n g e x p e r i m e n t a l d a t a for Fig. 5, a n d t h e Chief of R e s e a r c h of t h e M a r c o n i ' s W i r e less T e l e g r a p h C o m p a n y for t h e p e r m i s s i o n to p u b lish. M a n u s c r i p t received A p r i l 22, 1957. A n y discussion of this paper will appear in a Discussion Section to be published in the J u n e 1958 JOURNAL. N o v e m b e r 1957 SOCIETY REFERENCES 1. C. Kasper, Trans. Am. Electrochem. Soc., 77, 353 (1940). 2. R. O. Hull, "Control of P l a t i n g Baths b y P l a t i n g Cells," "Metal F i n i s h i n g " Guidebook-Directory, ISth a n n u a l ed., p. 367 (1949). 3. R. G i l m o n t a n d R. F. Walton, This Journal, 103, 549 (1956). 4. W. R. Smythe, "Static and D y n a m i c Electricity," McGraw-Hill Book Co., Inc., p. 233 (1950). 5. A. Cayley, "Elliptic Functions," G. Bell & Sons, London or Deighton, Bell & Co., Cambridge, p. 360 (1895). 6. F. Bowman, Proc. London Math. Soc., 39, 211 (1939). 7. E. J a h n k e a n d F. Emde, "Tables of F u n c t i o n s with F o r m u l a e and Curves," Dover Publications, New York (1945). 8. P. F. B y r d a n d M. D. F r i e d m a n , "Handbook of Elliptic Integrals for Engineers and Physicists," Springer Verlag-Berlin, New York (1954). 9. A. E. H. Love, Am. J. Math., 2, 158 (1889). Transistor-Grade Silicon I. The Preparation of Ultrapure Silicon Tetraiodide Bernard Rubin, Guy H. Moates, and Joseph R. Weiner Radiochemistry Section, Components and Techniques Laboratory, Electronics Research Directorate, Air Force Cambridge Research Center, Air Research and Development Command, Bedford, Massachusetts ABSTRACT A stepwise method of p r e p a r i n g and p u r i f y i n g SiI, has been found involving the direct combination of the elements, recrystallization of the product, followed b y s u b l i m a t i o n and zone purification steps. The values of the segregation coefficients of several i m p u r i t y elements have been determined, and it is shown that u n d e r ideal conditions some of these elements can be removed to concentrations of less t h a n one p a r t i m p u r i t y per billion parts of SiI, in sixty passes for a 50 cm length charge. T h e r e q u i r e m e n t s for t r a n s i s t o r s a n d o t h e r s e m i c o n d u c t o r devices t h a t o p e r a t e at t e m p e r a t u r e s h i g h e r t h a n those at w h i c h G e is effective h a v e stimulated considerable research in the preparation of " t r a n s i s t o r - g r a d e silicon." This t e r m r e f e r s to a Si m a t r i x i n w h i c h t h e i m p u r i t y levels a r e at c o n c e n t r a t i o n s of one p a r t i n o n e h u n d r e d m i l l i o n a n d p r e f e r a b l y as l o w as o n e p a r t p e r o n e h u n d r e d b i l l i o n of St. B e c a u s e t h e sources of this m a t e r i a l i n t h e U n i t e d S t a t e s a r e few, the A i r F o r c e has i n i t i a t e d a r e s e a r c h p r o g r a m i n Si c h e m i s t r y i n o r d e r to p r o vide a l t e r n a t e m e t h o d s of r e f i n e m e n t . Most Si i n this c o u n t r y is m a d e a c c o r d i n g to t h e reaction 2C -~ SiO~-->2CO ~- Si in electric arc furnaces. A typical productI has the following spectrographic analysis shown in Table I ( i ) . Semiconductor devices made of Si with levels of impurities as shown in Table I would be of little practicality and transistor devices with acceptors, donors, and lifetime-killersat such high concentrations would not function. Two approaches are available for removing these impurities, a metallurgical 1 Obtained from Coleman and Bell Company, Norwood, Ohio. a n d a p h y s i c o c h e m i c a l . T h e f o r m e r i n v o l v e s t h e zone r e f i n i n g t e c h n i q u e o r i g i n a t e d b y P f a n n (2). B y this Table I. Spectrographicanalysisof reagentSi Impurity element A1 As B Ca Co Cr Cu Fe Ga In K Li Mg Mn Na Ni P Ta Ti T1 V Zr C o n c . i n p a r t s of i m p u r i t y p e r m i l l i o n p a r t s of Si 6900 150 60 7100 7 250 300 6700 <10 3 <10 2.5 120 350 18 80 80 140 1300 5 60 250 Downloaded on 2016-05-16 to IP 130.203.136.75 address. Redistribution subject to ECS terms of use (see ecsdl.org/site/terms_use) unless CC License in place (see abstract). Vol. 104, No. 11 TRANSISTOR-GRADE m e t h o d , s o m e e l e m e n t s , e.g., A1, m a y b e r e m o v e d e f f e c t i v e l y f r o m St. H o w e v e r , B, w i t h a s e g r e g a t i o n coefficient of a b o u t 0.9 (3) c a n n o t b e s e p a r a t e d effic i e n t l y f r o m t h e m a t r i x . I n a d d i t i o n , b e c a u s e of t h e h i g h m e l t i n g p o i n t of Si ( 1 4 2 0 ~ contamination by leaching from the container material presents problems. For these reasons, the physicochemical a p p r o a c h w h i c h i n v o l v e s t h e s y n t h e s i s of a c o n v e n i e n t c o m p o u n d of St, its p u r i f i c a t i o n to t h e d e s i r e d l e v e l s of p u r i t y t h a t a r e r e q u i r e d u l t i m a t e l y f o r t r a n s i s t o r - g r a d e silicon a n d its d e c o m p o s i t i o n into e l e m e n t a l St, h a s b e e n c h o s e n b y this l a b o r a t o r y . I n o r d e r t h a t t h i s a p p r o a c h b e effective, t h e r e w e r e c e r t a i n p r e r e q u i s i t e s . T h e c o m p o u n d h a d to b e e i t h e r e a s i l y s y n t h e s i z e d or a v a i l a b l e , i t h a d to b e c a p a b l e of b e i n g p u r i f i e d to t h e e x t e n t r e q u i r e d b y t h e final Si specification, a n d it h a d to b e c a p a b l e of b e i n g d e c o m p o s e d r e l a t i v e l y e a s i l y i n t o e l e m e n t a l Si w h i c h w o u l d n o t b e c o n t a m i n a t e d i n t h e d e c o m p o s i t i o n process. Of t h e v a r i e t y of Si c o m p o u n d s t h a t s u g g e s t e d t h e m s e l v e s , i.e., t h e silanes, s i l o x a n e s , silicates, a n d h a l i d e s , t h e l a t t e r s e e m e d to b e b e s t s u i t e d to fulfill t h e a b o v e r e q u i r e m e n t s . T h e y a r e s t a b l e s u b s t a n c e s , r e l a t i v e l y e a s y to s y n thesize and handle, and are potentially decomposa b l e or r e d u c i b l e to p o l y c r y s t a l l i n e o r s i n g l e - c r y s t a l Si a n d t h e h a l o g e n o r h y d r o g e n h a l i d e . Of t h e f o u r u n m i x e d t e t r a h a l i d e s , S i F , is t h e m o s t s t a b l e a n d d e c o m p o s e s o n l y u n d e r e x t r e m e s of t e m p e r a t u r e a n d p r e s s u r e . F u r t h e r m o r e , it is a g a s u n d e r n o r m a l c o n d i t i o n s a n d , as such, is difficult to h a n d l e a n d p u r i f y . S i B r , a n d SiCL a r e b o t h l i q u i d s p o s s e s s i n g t h e a d v a n t a g e s of t h i s s t a t e w i t h r e s p e c t to p u r i f i c a tion, b u t b o t h a r e m o r e difficult to d e c o m p o s e t h a n the tetraiodide. Thermodynamic data indicate that t h e l a t t e r d e c o m p o s e s at a b o u t 1500~ at one a t m o s phere and can be reduced with hydrogen at about 600~ u n d e r t h e s e c o n d i t i o n s . A t 1000~ the diss o c i a t i o n e q u i l i b r i u m c o n s t a n t (Kp) w a s c a l c u l a t e d to b e 1.86 x 10 -~ f r o m t h e f r e e e n e r g y d a t a . A s s u m i n g a p a r t i a l p r e s s u r e of 3 m m of S i L in t h e r e a c t i o n c h a m b e r , t h e n t h e l i m i t i n g p a r t i a l p r e s s u r e of I~ is 0.236 ram. B y l o w e r i n g t h e p a r t i a l p r e s s u r e of L b e l o w this v a l u e , d e c o m p o s i t i o n of t h e SiI, occurs. S i n c e it is a solid u n d e r n o r m a l c o n d i t i o n s w i t h a relatively low boiling point (290~ it can be purified n o t o n l y b y t h e u s u a l t e c h n i q u e s of r e c r y s t a l l i z a t i o n a n d d i s t i l l a t i o n , b u t it l e n d s i t s e l f to zone p u r i f i c a t i o n . S i n c e SiI, offers a d i f f e r e n t m a t r i x t h a n Si to i m p u r i t i e s , it n e e d n o t b e e x p e c t e d t h a t t h e s e g r e g a t i o n coefficients of t h e s e i m p u r i t i e s b e t h e s a m e in b o t h m a t r i c e s . If t h e i m p u r i t i e s t h a t a r e n o t r e m o v e d in t h e c u r r e n t t e c h n i q u e of z o n e p u r i f i c a t i o n of Si c a n b e r e m o v e d in Sil~, t h e n a c o m b i n a t i o n of t h e t w o z o n e p u r i f i c a t i o n s c o u l d l e a d to t r a n s i s t o r - g r a d e St. I t s e e m e d f o r m o s t i n t e n t s a n d p u r p o s e s t h a t SiI~ o f f e r e d t h e g r e a t e s t p o t e n t i a l i t y as a n i n t e r m e d i a t e in t h e s y n t h e s i s of t r a n s i s t o r g r a d e St. A l i t e r a t u r e s u r v e y i n d i c a t e d t h a t h i g h p u r i t y Si has been prepared by methods utilizing the tetrac h l o r i d e , t h e t e t r a b r o m i d e , a n d t h e t e t r a i o d i d e of St. T h e t e t r a c h l o r i d e is r e d u c e d in a q u a r t z a p p a r a t u s a t a b o u t 1000~ w i t h Z n v a p o r as t h e r e ductant (4). 657 SILICON S a n g s t e r (5) h a s r e d u c e d t h e p u r i f i e d t e t r a b r o m i d e w i t h H~. L i t t o n (6) i n v e s t i g a t e d t h e t h e r m a l d e c o m p o s i t i o n of f r a c t i o n a l l y d i s t i l l e d t e t r a i o d i d e . M o r e recentlY, T h e u e r e r (7) r e d u c e d SIC1, w i t h H~. Experimental Preparation of silicon tetraiodide.--SiI, w a s p r e p a r e d b y t h e d i r e c t r e a c t i o n of I~ w i t h S i in a h o r i zontal reaction chamber (8). The iodine boiler, h e a t e d b y a m a n t l e to a b o u t 115~ w a s a 500 m l r o u n d - b o t t o m e d P y r e x flask s e a l e d a t t h e t o p a n d e q u i p p e d w i t h a 28/15 b a l l j o i n t a t r i g h t a n g l e s to t h e n e c k . A side a r m w a s p r e s e n t to p e r m i t t h e e n t r y of t h e d r i e d f l u s h i n g gas, a r g o n . T h e r e a g e n t was Baker and Adamson resublimed iodine. The reaction chamber was a 30-mm inner diameter Vycor f u r n a c e t u b e , 70 c m long, w i t h 28/15 s o c k e t j o i n t s a t e a c h end. T h e c o n n e c t i o n of P y r e x to V y c o r p e r m i t t e d e a s y r e m o v a l of o n e j o i n t f r o m t h e o t h e r o w i n g to t h e d i f f e r e n c e in coefficients of e x p a n s i o n . The furnace tube was heated by two electric multiple unit furnaces made by Hevi-Duty Electric Company, Milwaukee, Wisconsin, and the temperature monitored by using a chromel-alumel thermocouple a d j a c e n t to t h e f u r n a c e t u b e . T h e SiI, r e c e i v e r w a s a 5 0 0 - m l r o u n d - b o t t o m e d P y r e x flask s i m i l a r to t h e iodine boiler. I n a t y p i c a l r u n , r e a g e n t Si w a s g r o u n d i n t o p a r t i c l e s a n d t h e n c o l l e c t e d b e t w e e n No. 4 a n d No. 10 s i e v e s to p e r m i t as close p a c k i n g of t h e p a r t i c l e s as w a s p r a c t i c a b l e in t h e f u r n a c e t u b e w i t h o u t c h a n n e l i n g or b a c k p r e s s u r e s of L. T h e c h a r g e d I~ flask, reaction chamber, and receiver were connected usi n g a m i n i m u m of D o w C o m i n g S i l i c o n e g r e a s e a t the joints and a mercury pressure release valve was i n s e r t e d in p a r a l l e l w i t h t h e s y s t e m . T h e a r g o n w a s f l u s h e d t h r o u g h t h e s y s t e m a t a flow r a t e of a b o u t 524 m l / m i n a n d t h e t e m p e r a t u r e of t h e S i w a s r a i s e d to 810~ All exposed connecting sections between boiler, chamber, and receiver were maint a i n e d a t s u i t a b l e t e m p e r a t u r e s b y m e a n s of h e a t i n g tapes. When temperature equilibrium was attained, t h e I~ w a s h e a t e d to 115~ a n d c a r r i e d i n t o c o n t a c t w i t h t h e St. T h e p r o d u c t as it e n t e r e d t h e r e c e i v e r w a s a w h i t e m i s t and, a f t e r c o n d e n s a t i o n , a p i n k i s h w h i t e to r e d solid. T h e c o l o r a t i o n w a s p r o b a b l y d u e to u n r e a c t e d Is o r s o m e Si~I, f r o m t h e r e a c t i o n : Si ~- SiL ~ Si~L Gravimetric analysis. Calculated for SiI,: St, 5.2%; I, 94.8%. Found: St, 5.6%; I, 91.0%. Emission spectrographic analysis of the crude SiL gave the impurities as listed in Table II. A comparison with Table I indicates that three elements have increased in concentration: Na, B, a n d V. A n a n a l y s i s of P y r e x glass s h o w e d t h a t N a w a s p r e s e n t to t h e e x t e n t of a b o u t 8.5% a n d B a b o u t 10.8%. I t w a s e v i d e n t t h a t l e a c h i n g of t h e s e t w o i m p u r i t i e s f r o m t h e glass t o o k p l a c e u n d e r t h e c o n d i t i o n s of t h e S i L s y n t h e s i s . T h e r e w a s also t h e p o s s i b i l i t y of l e a c h i n g f r o m t h e V y c o r . F o r t h i s r e a son, a n a l l - q u a r t z a p p a r a t u s w i l l b e s u b s t i t u t e d f o r P y r e x in t h e s y n t h e s i s step. T h e d a i l y p r o d u c t i o n r a t e is a b o u t 450 g of S i L a n d t h e a p p a r a t u s m a y b e scaled up for larger yields if necessary. There is about,: ~( 95% c o n v e r s i o n to SiI~ b a s e d o n I~. Downloaded on 2016-05-16 to IP 130.203.136.75 address. Redistribution subject to ECS terms of use (see ecsdl.org/site/terms_use) unless CC License in place (see abstract). 658 JOURNAL OF THE ELECTROCHEMICAL Table II. Emissionspectrographic analyses Impurity element C r u d e SiIa Ag A1 As Au B Be Bi Ca Cd Co Cr Cu Fe Ga Hg In K Li Mg Mn Mo Na Ni P Pb Sb Sn Ti V Zn Zr 1.0 28.0 <1 N.D. * 16.0 N.D. N.D. N.D. <1 N.D. 1.5 12.0 55.0 <0.1 <1 <0.1 N.D. N.D. 1.6 4.5 N.D. 2.0 1.0 <5 <0.5 <1 <0.5 21.0 12 N.D. 1.2 N o v e m b e r 1957 Table Ill. Sensitivities oF impurities by emission spectrographic analysis Cone. of i m p u r i t y i n p a r t s of i m p u r i t y p e r m i l l i o n p a r t s SiI4 i R e c r y s t a l l i z e d SiI4 Sublimed Slit 0.1 6.5 N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. 0.3 0.5 N.D. N.D. 0.5 N.D. N.D. 0.4 2.0 N.D. N.D. N.D. N.D. N.D. N.D. N.D. 16.5 N.D. N.D. 5.0 SOCIETY N.D. 0.2 N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. 2.7 0.6 N.D. N.D. N.D. N.D. N.D. 0.1 0.1 N.D. N.D. N.D. N.D. N.D. N.D. N.D. 1.3 N.D. N.D. N.D. 9 Nat detected. Analysis of silicon tetraiodide.--Analyses of SiL were carried out ~ after hydrolyzing a sample with c o n d u c t i v i t y w a t e r i n P t c r u c i b l e s a n d h e a t i n g to 500~ u n t i l t h e r e a c t i o n w a s complete. C o m m e r cially available mixed internal standards were then a d d e d to t h e silica. T h i n - w a l l e d g r a p h i t e electrodes w e r e filled w i t h a d e q u a t e silica a n d i g n i t e d i n a He a t m o s p h e r e for 10 sec at 5 amp. A n o t h e r silica s a m p l e w a s i g n i t e d i n air for 50 sec at 10 a m p a n d b u r n e d to c o m p l e t i o n . T h o s e e l e m e n t s w h o s e l i n e s w e r e m a s k e d b y SiO, SiO~, a n d CN b a n d s i n t h e atmospheric r u n were read from the spectrum obt a i n e d i n t h e He r u n . T h e s e n s i t i v i t i e s of some of the i m p u r i t y e l e m e n t s i n SiO2 are g i v e n i n T a b l e III. Crystallization.--Of t h e v a r i o u s p u r i f i c a t i o n t e c h n i q u e s t h a t are a v a i l a b l e for solids, zone p u r i f i c a t i o n has t h e p o t e n t i a l i t y , if t h e s e g r e g a t i o n coefficients a r e f a v o r a b l e , of y i e l d i n g a m a t r i x i n w h i c h t h e d e s i r e d c o n c e n t r a t i o n s of i m p u r i t i e s c a n b e a t t a i n e d p r a c t i c a b l y . A l t h o u g h successful z o n e p u r i f i c a t i o n is n o t d e p e n d e n t o n a t t a i n i n g low c o n c e n t r a t i o n s of i m p u r i t y i n i t i a l l y , t h e u l t i m a t e c o n c e n t r a t i o n c a n b e m i n i m i z e d if t h e i n i t i a l c o n c e n t r a t i o n s a r e low. F o r this r e a s o n , o t h e r m e t h o d s of p r e l i m i n a r y p u r i f i c a t i o n h a v e b e e n i n v o k e d . T h e first of these w a s c r y s t a l l i z a t i o n of t h e c r u d e SiI, f r o m t o l u e n e . T h e s o l u b i l i t y of SiL i n t o l u e n e was f o u n d to b e 10.3% b y w e i g h t a t l l 0 ~ a n d 3.2% a t 20~ i n d i c a t i n g a b o u t a n 82 % r e c o v e r y of SiI, i n a s i n g l e step c r y s t a l l i z a t i o n . 2 T o b e p u b l i s h e d b y t h e M e t a l H y d r i d e s Co., Journal o$ A n a l y t i cal Chemistry. Impurity elements Ag A1 As B Be Ca Cd Cr Cu Fe Hg Mg Mn p Sb Ti Zn Zr S e n s i t i v i t y i n p a r t s of i m p u r i t y p e r m i l l i o n p a r t s SiO2 0.25 0.65 15 0.50 0.25 0.50 1.0 2.5 0.25 0.65 5.0 0.25 0.75 25 3.O 1.0 10 5 I n practice, the c r u d e SiI, w a s t r a n s f e r r e d i n t h e sealed r e c e i v e r to a d r y box, a n d sufficient f r a c t i o n a l l y distilled t o l u e n e , d r i e d over Na, w a s a d d e d to m a k e a 10% solution. T h e s o l u t i o n w a s h e a t e d to the b o i l i n g point, a n d t h e r e s u l t i n g s o l u t i o n w a s cooled s l o w l y to 0~ T h e l i q u o r was d e c a n t e d , a n d the r e m a i n d e r r e m o v e d u n d e r v a c u u m at a b o u t 70~ A s p e c t r o g r a p h i c a n a l y s i s of t h e c r y s t a l l i z e d p r o d u c t is g i v e n i n T a b l e II. A c o m p a r i s o n of t h e c r y s t a l l i z e d a n d c r u d e p r o d u c t i n d i c a t e s t h a t t h e r e is a c o n s i d e r a b l e d e c r e a s e i n t h e o v e r - a l l i m p u r i t y c o n c e n t r a t i o n s of m o s t of t h e e l e m e n t s . It c a n be p o s t u l a t e d t h a t t h e i m p u r i t y e l e m e n t s are i n a m o l e c u l a r f o r m t h a t is t o l u e n e soluble, and, i n all p r o b a b i l i t y , this f o r m is t h e iodide. It is p o s s i b l e t h a t t h e efficiency of t h e c r y s t a l l i z a t i o n step is the r e s u l t , i n p a r t , of s m a l l a m o u n t s of silica i n t r o d u c e d b y t h e u n a v o i d a b l e h y d r o l y s i s of the SiI, d u r i n g h a n d l i n g . F u r t h e r m o r e , since the e x t r a c t i o n is a r e l a t i v e l y low t e m p e r a t u r e step, t h e r e is l i t t l e or no occasion for l e a c h i n g as is i n d i c a t e d b y the low c o n c e n t r a t i o n s of such c o n s t i t u e n t s of glass as B a n d Fe. G r a v i m e t r i c a n a l y t i c a l m e t h o d s o n the c r y s t a l l i z e d SiI~ y i e l d e d t h e f o l l o w i n g a n a l y s i s : St, 5.4%; I, 91.9%. T h e s e v a l u e s are closer to t h e o r e t i c a l t h a n the c r u d e SiI,, a n d i n d i c a t e t h a t some of the I~ or h i g h e r h o m o l o g u e s h a v e b e e n r e m o v e d b y t h e c r y s t a l l i z a t i o n step. T h e a p p e a r a n c e of t h e m o r e l i g h t l y colored m a t e r i a l s u p p o r t s this a s s u m p t i o n . Sublimation.--Fractional d i s t i l l a t i o n of t h e r e c r y s t a l l i z e d SiI, w a s n e x t c o n s i d e r e d as a possible p u r i f i c a t i o n t e c h n i q u e . It w a s o b s e r v e d t h a t s u b l i m a t i o n o c c u r r e d w i t h use of a v a c u u m f r a c t i o n a l d i s t i l l a t i o n system. S u b l i m a t i o n h a d also b e e n u s e d as a t r a n s f e r p r o c e d u r e (6) for SiL a n d it w a s d e cided to u t i l i z e i t as the second step i n t h e p u r i f i c a tion. T h e s u b l i m a t i o n a p p a r a t u s consisted of a 30c m l o n g P y r e x c y l i n d e r 10 cm i n d i a m e t e r w i t h 1 0 - r a m g r o u n d flanges o n each end. A r o u n d t h e cylinder were wrapped two heating tapes individually controlled by Powerstats. A dome with a 4 - r a m stopcock w a s c o n n e c t e d to o n e e n d of the c y l i n d e r , and, o n t h e o t h e r end, a second d o m e Downloaded on 2016-05-16 to IP 130.203.136.75 address. Redistribution subject to ECS terms of use (see ecsdl.org/site/terms_use) unless CC License in place (see abstract). VoL 104, No. 11 TRANSISTOR-GRADE e q u i p p e d w i t h a 3 2 - c m l o n g cold finger. T h e l a t t e r d o m e w a s c h a r g e d in a d r y b o x w i t h e n o u g h c r y s t a l l i z e d S i L to fill it. T h e a p p a r a t u s w a s a s s e m b l e d w i t h t h e e n d s h e l d t e m p o r a r i l y in p o s i t i o n b y c l a m p s ; a p a r t i a l v a c u u m w a s a p p l i e d to c o m p l e t e t h e seals. T h e c h a r g e d a s s e m b l y w a s t h e n r e m o v e d f r o m t h e d r y box, c o n n e c t e d to a v a c u u m s y s t e m , a n d t h e c h a r g e d e n d w a s h e a t e d b y a m a n t l e to a b o u t 100~ W h e n t h e s u b l i m a t e a p p e a r e d as l a r g e w h i t e c r y s t a l s on t h e a r e a a d j a c e n t to t h e h e a t e d charge, the sublimation was repeated by heating t h e first t a p e , t h e n t h e s e c o n d u n t i l u l t i m a t e l y t h e c r y s t a l s a p p e a r e d on t h e d o m e . T h e a p p a r a t u s w a s d i s a s s e m b l e d a n d t h e p r o d u c t s c r a p e d off w i t h L u cite rods. A n e m i s s i o n s p e c t r o g r a p h i c a n a l y s i s of t h e s u b l i m e d p r o d u c t is g i v e n in T a b l e II. I t is o b v i o u s f r o m c o m p a r i s o n of t h e r e s u l t s in T a b l e II t h a t c o n s i d e r a b l e p u r i f i c a t i o n is effected b y s u b l i m a t i o n of t h e c r y s t a l l i z e d p r o d u c t , p a r t i c u l a r l y i n t h e cases of A1, Mn, Ti, a n d Mg. T h e C u c o n c e n t r a t i o n is s e e n to i n c r e a s e f r o m 0.3 to 2.7 p p m a n d t h i s is d u e to C u i m p u r i t i e s f o u n d in t h e P t c r u c i b l e s u s e d in t h e h y d r o l y s i s of t h e SiI, p r i o r to s p e c t r o g r a p h i c a n a l y s i s . T h e s o u r c e of c o n t a m i n a t i o n h a s b e e n e l i m i n a t e d b y s u b s t i t u t i n g q u a r t z for Pt. C o n c e n t r a t i o n s of a l l t h e i m p u r i t i e s d e t e c t e d a r e n o w in or b e l o w t h e p a r t per million range. Further purification may be effected b y t h e z o n e - m e l t i n g p r o c e s s in t h e c a s e of i m p u r i t i e s w i t h f a v o r a b l e s e g r e g a t i o n coefficients. Zone purification.---Determination of effective s e g r e g a t i o n coefficients, K , , , u n d e r a g i v e n set of e x p e r i m e n t a l c o n d i t i o n s w a s u n d e r t a k e n . I t is e m p h a s i z e d t h a t t h e v a l u e s r e p o r t e d a r e t h o s e of e f f e c t i v e coefficients, a n d n o t e q u i l i b r i u m v a l u e s . B e c a u s e m o r e s u b t l e v a r i a b l e s s u c h as c r y s t a l o r i e n t a tion, c o n v e c t i o n , e f f e c t i v e b o u n d a r y l a y e r , s i l i c a formation, and supercooling were not controlled, t h e r e e x i s t s s o m e d i s c r e p a n c y in t h e v a l u e s r e ported. Silicon tetraiodide recrystallized from toluene w a s e n c a p s u l a t e d in s e a l e d P y r e x a m p o u l e s , d e n s i fled, a n d l e v e l e d b y r e p e a t e d v e r t i c a l r e v e r s e p a s s age of a s i n g l e z o n e ( 2 ) . A single m o l t e n zone 2 - c m l o n g w a s p a s s e d t h r o u g h t h e 2 0 - c m l e n g t h of l e v e l e d charge. The zone-melted charge was then segm e n t e d i n t o t e n e q u a l sections, e a c h s e c t i o n h y d r o l y z e d to silica in c o n d u c t i v i t y w a t e r , a n d f i n a l l y e a c h s e c t i o n w a s a n a l y z e d s p e c t r o g r a p h i c a l l y as d e scribed above. P r o f i l e s c o n s t r u c t e d f r o m t h e r e s u l t s of t h e s e a n a l y s e s d e p i c t e d c o n c e n t r a t i o n s , C~, of i m p u r i t i e s r e t a i n e d in t h e solid a f t e r p a s s a g e of o n e m o l t e n zone. T h e i n i t i a l c o n c e n t r a t i o n , Co, w a s t a k e n as t h e a v e r a g e c o n c e n t r a t i o n of t h e t e n s e g m e n t s . This a v e r a g e v a l u e is v a l i d b e c a u s e t h e c h a r g e w a s l e v e l e d to a s s u r e a n i n v a r i a n c e of i m p u r i t y c o n c e n t r a t i o n s a l o n g t h e l o n g i t u d i n a l axis. B y d e f i n i t i o n C, = KC~ (I) w h e r e C, is t h e c o n c e n t r a t i o n of a n i m p u r i t y in t h e l i q u i d . A t t h e p o i n t of t h e first f r e e z i n g (i.e., a t X = 0, if X is t h e d i s t a n c e a l o n g t h e c h a r g e ) , C~ = Co. T h e r e f o r e , K = C./C. a t X = 0 (II) 659 SILICON i /, -T-3 ~' FJ - T - 3 ~ O -T-54 X - T gl~Ol~ll IC~IUCURVE Foe. K=O.I } TE = $ cM/w d .20~ Fig. 1. Concentration profiles of Mn impurity species in a Sih matrix. B y p l o t t i n g the ratio C,/Co vs. X / l (l is the zone length) i t was possible to determine K e , f r o m the intersection of the profile w i t h the y - a x i s . Fig. I is a series of experimental profiles for the M n species in t h e silicon t e t r a i o d i d e m a t r i x . A l s o d e p i c t e d is t h e c a l c u l a t e d c u r v e f o r a s o l u t e h a v i n g a K e q u a l to 0.1. T h e s e profiles a r e t y p i c a l of t h o s e s p e c i e s w h i c h d i s p l a y s e g r e g a t i o n in a c c o r d a n c e w i t h K e , of a p p r o x i m a t e l y 0.1. T h e p r e p o n d e r a n c e of i m p u r i t y s o l u t e in t h e e n d of t h e c h a r g e t o w a r d w h i c h t h e zones t r a v e l e d is e v i d e n c e t h a t t h e s e g r e g a t i o n c o efficient is less t h a n u n i t y . T h e s h a r p d r o p s in c o n c e n t r a t i o n a t t h e m i n i m a o b s e r v e d i n t h e n e x t to l a s t zone a r e d u e to t h e g r o w t h of t h e l a s t zone a t t h e c o n c l u s i o n of t h e pass. I t w a s n e c e s s a r y to s t o p t h e t r a v e l of t h e zone b e f o r e i t p r o c e e d e d i n t o a n u n l e v e l e d p o r t i o n of t h e c h a r g e ; a t t h i s t i m e t h e final zone g r e w b a c k i n t o a l a r g e p a r t of t h e p r e c e d i n g zone, a n d t h e n s o l i d i f i e d b y n o r m a l f r e e z i n g f r o m b o t h ends. Although only a single molten zone was passed t h r o u g h t h e c h a r g e , t h e c o n c e n t r a t i o n s i n t h e first h a l f of t h e c h a r g e to b e m e l t e d w e r e b e l o w t h e l i m its of s p e c t r o g r a p h i c d e t e c t a b i l i t y for a b o u t h a l f of t h e i m p u r i t i e s s t u d i e d . T h e r e f o r e , it w a s n e c e s s a r y to r e s o r t to a m e t h o d of m a t h e m a t i c a l e x t r a p o l a t i o n in o r d e r to e x t e n d t h e p r o f i l e to t h e y - a x i s . T h e expression C.=K~. C o + K.----~-- was e m p l o y e d . H e r e C. is t h e s o l u t e c o n c e n t r a t i o n f r o z e n o u t i n a n y g i v e n zone ( e x c e p t t h e l a s t ) , C,_, is t h e s o l u t e c o n c e n t r a t i o n f r o z e n o u t in t h e p r i o r zone, a n d Co is t h e i n i t i a l i n v a r i a n t c o n c e n t r a t i o n . T h e e q u a t i o n is a n e x p r e s s i o n of a p p r o x i m a t i o n a n d b e c o m e s less v a l i d as t h e l/d r a t i o ( z o n e l e n g t h : c h a r g e l e n g t h ) i n c r e a s e s . V a l u e s of K , ~ a r e s u b ~ t i t u t e d u n t i l C~-1 a t X = 0 is e q u a l to K , ~ Co. V a l i d - Downloaded on 2016-05-16 to IP 130.203.136.75 address. Redistribution subject to ECS terms of use (see ecsdl.org/site/terms_use) unless CC License in place (see abstract). 660 JOURNAL OF THE ELECTROCHEMICAL i t y of t h e s e e x t r a p o l a t i o n s is b a s e d on t h e r e a s o n a b l e d e g r e e of a g r e e m e n t b e t w e e n c o m p u t e d a n d e x p e r i m e n t a l c u r v e s f o r i m p u r i t i e s d e t e c t a b l e in a l l s e g ments. Zones have been passed downward through the charge with similar results, thereby eliminating the p o s s i b i l i t y of a n y s e p a r a t i o n b y flotation. T h e r e f o r e , r e g a r d l e s s of t h e a n o m a l i e s in t h e profile, it m a y b e a s s u m e d t h a t a K of a c e r t a i n v a l u e e x i s t s in o r d e r to r e l o c a t e t h e i m p u r i t i e s as d e p i c t e d . This is so if o n e a s s u m e s t h a t s e g r e g a t i o n is c a u s e d o n l y b y t h e d i f f e r e n c e s in s o l u b i l i t y in t h e s o l i d a n d l i q u i d phases. T a b l e I V s u m m a r i z e s t h e effective s e g r e g a t i o n coefficients of v a r i o u s i m p u r i t y s p e c i e s in a SiI, m a t r i x . I n a s m u c h as a l l v a l u e s r e p o r t e d in T a b l e IV a r e less t h a n u n i t y , p u r i f i c a t i o n c a n b e effected b y m o v i n g e a c h of t h e s o l u t e i m p u r i t i e s to t h e e n d of t h e c h a r g e t o w a r d w h i c h t h e m o l t e n zones t r a v e l . A p p l y i n g t h e v a l u e of K~ff as d e t e r m i n e d f o r b o r o n t r i i o d i d e (i.e., 0.4) to t h e f a m i l y of e q u a t i o n s g i v e n b y P f a n n ( 2 ) , it c a n be s h o w n t h a t a n u l t i m a t e c o n c e n t r a t i o n r a t i o of 1 X 10 -= c a n b e a t t a i n e d for a c h a r g e h a v i n g a d / l r a t i o of 20: 1. F u r t h e r m o r e , 70% of this c h a r g e w i l l h a v e a c o n c e n t r a t i o n w h i c h h a s b e e n r e d u c e d to one p a r t in a b i l l i o n o r less if t h e i n i t i a l c o n c e n t r a t i o n w a s o n e p a r t i n a million. T h e n u m b e r of p a s s e s r e q u i r e d to a t t a i n t h i s c o n c e n t r a t i o n is a p p r o x i m a t e d b y K"= (IV) C.=o w h e r e n is t h e n u m b e r of passes. A n efficiency f a c t o r (9) of 53% m u s t b e a p p l i e d for a K e q u a l to 0.4. W i t h u s e of t h i s f a c t o r i n c o n j u n c t i o n w i t h Eq. ( I V ) , Table IV. Effective segregation coefficients of various impurity species in a Sil~ matrix ( C h a r g e l e n g t h , d = 20 c m ; z o n e l e n g t h , 1 = 2 c m ; z o n e t e m p e r r a t e of c r y s t a l l i z a t i o n = 5 c m / h r ) ature = 135 ~ ~ 4 ~ Keff Impurity species B* A1 Na Mg* Cu Fe* Ti Mn* Boron triiodide% * Values obtained by extrapolation. t Doped samples. M a x i m u m v a r i a b i l i t y of results. 0.16 0.70 0.10 0.16 0.64 0.15 0.91 • 0.072 +_ 0.35 (single r u n ) • 0.01 _ 0.17 • 0.08 _ 0.08 0.09 • 0.04 0.42 +__0.22 SOCIETY November 1957 60 p a s s e s a r e r e q u i r e d to a t t a i n this c o n c e n t r a t i o n profile. The concentrations computed above indicate that SiI, can b e p u r i f i e d to less t h a n o n e p a r t of i m p u r i t y p e r b i l l i o n p a r t s of SiI, p r o v i d e d e q u i l i b r i u m c o n d i t i o n s p r e v a i l to t h e e x t e n t d e m o n s t r a t e d i n t h e s e e x p e r i m e n t s . F u r t h e r m o r e , it m u s t b e a s s u m e d t h a t impurities are not leached from container walls. F i n a l l y , it s h o u l d b e m e n t i o n e d t h a t t h e p u r i t y of a sample can be improved by: (a) decreasing the v a l u e of t h e effective s e g r e g a t i o n coefficient ( f o r K < 1) b y c o n t r o l l i n g c o n d i t i o n s in o r d e r to m o r e closely approximate equilibrium, (b) controlling t h e l/d r a t i o in o r d e r to m a k e t h e u l t i m a t e c o n c e n t r a t i o n profile m o r e f a v o r a b l e , a n d (c) c h o o s i n g a s m a l l e r f r a c t i o n of t h e z o n e - r e f i n e d c h a r g e . A m o r e d e t a i l e d t r e a t m e n t of t h e z o n e p u r i f i c a t i o n of SiI, is f o r t h c o m i n g in t h e s e c o n d p a p e r of this series. Acknowledgments T h e a u t h o r s t h a n k B. M a n n i n g of T e c h n i c a l O p e r a t i o n s , Inc., A r l i n g t o n , M a s s a c h u s e t t s , f o r his a d v i c e on t h e d e s i g n o f t h e z o n e p u r i f i c a t i o n f u r n a c e ; W. J a c k s o n a n d R. M o r r i s o n of t h e E n g i n e e r i n g D i v i sion, A i r F o r c e C a m b r i d g e R e s e a r c h C e n t e r , for t h e m o d i f i c a t i o n s a n d c o n s t r u c t i o n of this a p p a r a t u s . A c k n o w l e d g m e n t is also e x p r e s s e d to A. K a n t , W a t e r t o w n A r s e n a l , W a t e r t o w n , Mass., for his h e l p f u l suggestions. M a n u s c r i p t r e c e i v e d J u l y 16, 1956. This p a p e r was p r e p a r e d for d e l i v e r y before the W a s h i n g t o n Meeting, M a y 12-16, 1957. A n y discussion of this p a p e r will a p p e a r in a Discussion Section to b e p u b l i s h e d in t h e J u n e 1958 JOURNAL. REFERENCES 1. S p e c t r o g r a p h i c A n a l y s e s b y Metal Hydrides, Inc., Beverly, Mass. 2. W. G. Pfann, J. Metals, 194, 747 (1952). 3. J. A. Burton, Physica, 20, 845 (1954). 4. D. W. Lyon, C. M. Olson, a n d E. D. Lewis, J. (and Trans.) glectrochem. Soc., 96, 359 (1949). 5. Hughes A i r c r a f t Co., Q u a r t e r l y Technical Rpts., Sign a l Corps Contract No. DA-36-039-SC-42574 (19521953). 6. Foote M i n e r a l Co., Q u a r t e r l y Technical Rpts., Signal Corps Contract No. Da-36-039-SC-5550 and DA-36039-SC-56993 (1951-1954). 7. H. C. Theuerer, Bell Labs. Record, 33, No. 9, 327 (1955). 8. R. S c h w a r z and A. Pflugmacher, Berichte, 75B, 1062 (1942). 9. R. J. Dunworth, "Some Theoretical F a c t o r s in t h e Zone Melting Process," ANL-5360, M e t a l l u r g y Division, A r g o n n e N a t i o n a l L a b o r a t o r y , Lemont, Ill., ( F e b r u a r y 1956). Downloaded on 2016-05-16 to IP 130.203.136.75 address. Redistribution subject to ECS terms of use (see ecsdl.org/site/terms_use) unless CC License in place (see abstract).
© Copyright 2026 Paperzz