Review: Base and Exponent Integer Exponents Rules OBJECTIVE: TO USE EXPONENT RULES TO SIMPLIFY EXPRESSIONS . Identify the base and the exponent in each of the following. Pay close attention to parenthesis. EXAMPLES A) 32 B) -32 7 C) (-3) D) x4 9 E) (-x) F) -x3 Review: Solutions Identify the base and the exponent in each of the following. Pay close attention to parenthesis. EXAMPLES A) 32 B) -32 7 C) (-3) D) x4 9 E) (-x) F) -x3 Examples Evaluate. A) 32 B) -32 C) (-3)2 Answers A) base = 3, exponent = 2 C) base = -3, exponent = 7 E) base = -x, exponent = 9 B) base = 3, exponent = 2 D) base = x, exponent = 4 F) base = x, exponent = 3 Examples -- Solutions Evaluate. A) 32 B) -32 C) (-3)2 Product Rule (like bases) am · an = am + n In other words, if multiplying with the same base, add the exponents. Answers A) (3)(3) = 9 B) - (32) = - (3)(3) = - 9 C) (-3)(-3) = 9 EXAMPLES G) x2(x) H) 23(22) I) (-3)3(-3)2 1 Product Rule Solutions Power to a Power am · an = am + n ( am)n = amn In other words, if multiplying with the same base, When a power is raised to a power, multiply the add the exponents. EXAMPLES G) x2(x) H) 23(22) EXAMPLES exponents. I) (-3)3(-3)2 J) (x5)2 K) (y4)3 Answers G) x2+1 = x3 H) 23+2 = 25 = 32 I) (-3)3+2 = (-3)5 = -243 Power to a Power Solutions Product to a Power ( am)n = amn (ab)n = an bn When a power is raised to a power, multiply the When a product is raised to a power, raise each exponents. EXAMPLES J) (x5)2 EXAMPLES factor in the product to the power. K) (y4)3 L) (2x2)2 M) (3a3b4)2 Answers J) x 5 · 2 = x10 K) y 4 · 3 = y12 Product to a Power Solutions (ab)n = an bn When a product is raised to a power, raise each factor in the product to the power. EXAMPLES L) (2x2)2 M) (3a3b4)2 Answers L) 22 (x2)2 = 4x4 M) 32 (a3)2 (b4)2 = 9(a3·2)(b4·2)= 9a6b8 Quotient to a Power n an a = n b b In other words, when raising a fraction to a power, raise the numerator to the power and the denominator to the power. 2 Examples Solutions Examples a3 N) 2 b 3 x5 y O) 2 6 m n 4 a3 N) 2 b 3 x5 y O) 2 6 m n 4 ANSWERS N) More Examples P) (c2)3 (3c5)4 Q) (6mn)3(5m3)2 R) (2a3)5(3ab2)3 (a 3 )3 a 3⋅3 a 9 = = (b 2 )3 b 2 ⋅3 b6 O) ( x 5⋅ 4 y1⋅ 4 ) x 20 y 4 = (m 2⋅ 4 n 6⋅ 4 ) m8 n 24 More Examples SOLUTIONS P) (c2)3 (3c5)4 = c6(34 c20) = c6(81 c20) =81 c26 Q) (6mn)3(5m3)2 = (63m3n3)(52m6) =(216 m3n3 )(25m6) = 5400m9n3 R) (2a3)5(3ab2)3 (32a15)(27a3b6) 864a18b6 3
© Copyright 2026 Paperzz