Mathematics – List 1 1 Mathematics List 1 1. Evaluate or simplify (write as a power): − 21 4 , 9 3 √ , 3 3 5 3 8 , − 32 100 − 14 , 4 √ √ 3 2 · 4, , 1 √ , 3 5 q √ 3 9 3. 2. Solve the equations and inequalities: (a) 42x+1 = 85x−2 , (b) 7·3x+1 −5x+2 = 3x+4 −5x+3 , (c) 2x ·42x ·83x = 128, x 2x x2 +4 x x (d) (3 ) ·(81 ) = 9 −x x (e) 5 −25·5 , (g) 2x+2 −2x+1 ≤ 2x−2 −2x−1 , x−1 1 (f) = 92x , 3 = 24, (h) 4x +8 < 6·2x , (i) 32x−1 −3x−1 ≥ 2. 3. Evaluate or simplify: log 1 36, 6 log2 log6 2 + log6 18, √ 8, log5 9log3 5 , log3 2 − log9 2, log√5 125, log 4 3 ln 2 + log2 e, 27 , 64 log 1 eln 2 3 2 , log 1 3 + log4 3 + log8 3. 2 4. What profit will bring, after 4 years, a 1000 zl deposit at annual interest of 6% in case the interest is capitalized once a year. How will this change in case of monthly capitalization? 5. You make a long term deposit of 100 zl at annual interest of 6%. How long will it take for the value of your deposit to exceed 1000 zl in case the capitalization is: (a) annual, (b) monthly? 6. Suppose the nominal annual interest of a deposit is r · 100%. What is the effective interest after one year in case the capitalization is (a) monthly, (b) daily, (c) n times a year (at equal time periods)? 7. Solve the equations: (b) ln2 x+3 ln x = 4, (a) log3 (x+1) = 2, (d) log5 x + log5 (x + 5) = 2 + log5 2, (c) log2 x+log8 x = 12, (e) logx 2 − log4 x + 7 = 0. 6 8. Solve the inequalities: 1 (a) log3 x < − , 3 (b) log 1 x ≤ 2, 2 (d) log 1 x + 2 log 1 (x − 1) ≤ log 1 6, 3 9 3 (c) log2 x ≥ log2 x2 , (e) log2 log3 x−1 > 0. x+1 Mathematics – List 1 2 9. Solve the systems of equations: y 2 log3 x − log3 y = 2 xy = 36 x =9 (a) , (b) , (c) . 1 10y−x = 100 xlog3 y = 16 y = log3 x + 1 10. Sketch the graphs of the functions: (a) y = |3x − 3|, (b) y = 2−x , (c) y = log2 (2x), (d) y = ln |x|. Hints and answers √ √ 2. a) 5/8, b) −1, c) 1/2, d) − 2, 2, e) 2, f) 1/5, g) ∅, h) (1, 2), i) [1, ∞). 4. 1000 · (1.06)4 , 1000 · (1.005)48 . 5. a) l such that 100 · (1.06)l > 1000, b) m 365 such that 100 · (1.005)m > 1000,. 6. a) (1 + r/12)12 − 1, b) (1 + r/365) − 1, √ 3 n −4 9 4. 8. a) c) (1 + r/n) − 1. 7. a) 8, b) e , e, c) 2 , d) 5, e) 8, 1/ √ 3 x ∈ (0, 1/ 3), b) x ≥ 1/4, c) x ∈ (0, 1), d) x ≥ 3, e) x < −1. 9. a) x = 3, y = 1 or x = 6, y = 4, b) x = 9, y = 4 or x = 4, y = 9, c) x = 3, y = 2 or x = 1/9, y = −1.
© Copyright 2026 Paperzz