Introduction Multiple angles Powers of sine / cosine Summary DE MOIVRE’S THEOREM: TRIG IDENTITIES ALGEBRA 8 INU0114/514 (MATHS 1) Dr Adrian Jannetta MIMA CMath FRAS De Moivre’s Theorem: trig identities 1 / 13 Adrian Jannetta Introduction Multiple angles Powers of sine / cosine Summary Objectives This presentation will cover the following: • Recap of Binomial expansions and De Moivre’s theorem • Using De Moivre’s theorem to produce trig identities • Express multiple angle functions (e.g. sin4θ ) in terms of single angle functions sin θ and cos θ . • Express powers of functions sin4 θ in terms of multiple angle functions (e.g. cos 4θ ). In this context De Moivre’s theorem is a mathematical tool which shows us relationships between trig functions. It provides an alternative (often easier) way of simplifying trig functions that we might need to apply calculus to (e.g. integration). De Moivre’s Theorem: trig identities 2 / 13 Adrian Jannetta Introduction Multiple angles Powers of sine / cosine Summary Recap: De Moivre’s Theorem De Moivre’s theorem is a relationship between complex numbers and trigonometry. (cos θ + i sin θ )n = cos nθ + i sin nθ Previously we used it to evaluate powers and nth roots of a number. By expanding the LHS and comparing real and imaginary coefficients it is possible to derive trig identities for powers of sine and cosine in terms of compound angles. We will study this application in next. De Moivre’s Theorem: trig identities 3 / 13 Adrian Jannetta Introduction Powers of sine / cosine Multiple angles Summary Recap: Binomial expansions Expanding brackets 1 4 Use the binomial theorem to expand x + x Recall that the binomial coefficients n = 4 are 1, 4, 6, 4 and 1. 1 x+ x 4 1 4 ∴ x+ x 0 1 2 1 1 1 3 2 = 1(x ) + 4(x ) + 6(x ) x x x 3 4 1 1 +4(x1 ) + 1(x0 ) x x 4 1 = x4 + 4x2 + 6 + + x2 x4 4 We will need the binomial series for our work with De Moivre’s theorem and trig identities. De Moivre’s Theorem: trig identities 4 / 13 Adrian Jannetta Introduction Multiple angles Powers of sine / cosine Summary De Moivre’s theorem and trig identities Consider De Moivre’s theore for the case n = 2 (cos θ + i sin θ )2 = cos 2θ + i sin 2θ If we expand the brackets on the LHS: (cos θ ) + (i sin θ )2 + 2i sin θ cos θ 2 = cos 2θ + i sin 2θ 2 cos θ − sin θ + 2i sin θ cos θ = cos 2θ + i sin 2θ If we compare the real parts of both sides: cos2 θ − sin2 θ = cos 2θ (1) Comparing the imaginary parts gives us 2 sin θ cos θ = sin 2θ (2) Equations (1) and (2) are trig identities which you might recognise from past work. De Moivre’s theorem provides a way of generating trig identities. De Moivre’s Theorem: trig identities 5 / 13 Adrian Jannetta Introduction Powers of sine / cosine Multiple angles Summary Multiple angle to single angle Express cos 3θ in terms of sinθ and cos θ . Construct an equation from De Moivre’s theorem containing the angle 3θ cos 3θ + i sin3θ = (cos θ + i sinθ )3 We are going to be writing a lot of ‘sines’ and ‘cosines’: so put c = cos θ and s = sin θ . Expand the RHS using binomial theorem: cos 3θ + i sin3θ = (c + is)3 = c3 + 3c2 (is) + 3c(is)2 + (is)3 = c3 + 3c2 si + 3cs2 i2 + s3 i3 Simplify the powers of i wherever possible: cos 3θ + i sin3θ De Moivre’s Theorem: trig identities = c3 + 3c2 si − 3cs2 − s3 i = c3 − 3cs2 + (3c2 s − s3 )i 6 / 13 Adrian Jannetta Introduction Multiple angles Powers of sine / cosine Summary We grouped the real and imaginary parts on the RHS. Equating the real part on each side then we get the relationship we need: cos 3θ ≡ cos3 θ − 3 cos θ sin2 θ We didn’t need it, but the method also gives us another identity for free! Compare the imaginary parts on both sides of the equation to get: sin 3θ ≡ 3 cos2 θ sin θ − sin3 θ De Moivre’s Theorem: trig identities 7 / 13 Adrian Jannetta Introduction Powers of sine / cosine Multiple angles Summary Useful formulae A complex number in polar form is written z = cos θ + i sin θ . Raise to the power n and apply De Moivre’s theorem: zn = (cos θ + i sin θ )n n = cos nθ + i sin nθ ∴z (3) Substituting a power of −n: z−n = (cos θ + i sin θ )−n = 1 1 = (cos θ + i sin θ )n cos nθ + i sin nθ Multiply top and bottom by the complex conjugate: z−n = Therefore cosnθ − i sin nθ cos nθ − i sin nθ 1 × = cos nθ + i sin nθ cosnθ − i sin nθ cos2 nθ + sin2 nθ 1 z−n = = cos nθ − i sin nθ zn Add (3) and (4) to get: Subtract (4) from (3): De Moivre’s Theorem: trig identities (4) zn + 1 = 2 cos nθ zn (5) zn − 1 = 2i sin nθ zn (6) 8 / 13 Adrian Jannetta Introduction Multiple angles Powers of sine / cosine Summary Deriving trig identities Express sin4 θ in terms of multiple angles of sin θ and cos θ . Since we have a function of sin θ we’ll use equation 6. Setting n = 1 we can write: 1 2i sin θ = z − z 4 We have to make the sin θ term so: 1 4 4 (2i sin θ ) = z − z Expand and simplify the LHS. Expand the RHS with the binomial theorem: 3 4 2 1 1 1 1 (2i)4 sin4 θ = z4 + 4z3 − + 6z2 − + 4z − + − z z z z 1 4 16 sin4 θ = z4 − 4z2 + 6 − + z2 z4 De Moivre’s Theorem: trig identities 9 / 13 Adrian Jannetta Introduction Powers of sine / cosine Multiple angles Summary We group the powers of z like this: 16 sin4 θ 1 4 = z4 + − 4z2 − + 6 4 2 z z 1 1 = z4 + − 4 z2 + +6 z4 z2 The grouped terms inside the brackets can be expressed using the cosine function given in equation 5. Therefore: 16 sin4 θ sin4 θ = (2 cos 4θ ) − 4(2 cos 2θ ) + 6 = 2 cos 4θ − 8 cos 2θ + 6 2 cos 4θ − 8 cos 2θ + 6 = 16 Simplify to get sin4 θ = De Moivre’s Theorem: trig identities cos 4θ − 4 cos 2θ + 3 8 10 / 13 Adrian Jannetta Introduction Multiple angles Powers of sine / cosine Summary Deriving trig identities Express cos3 4θ in terms of multiple angle functions. Since we have a function of cos θ we’ll use equation 5. Setting n = 4 we can write: 1 2 cos 4θ = z4 + z4 We have to make the cos3 4θ term so: 1 3 3 4 (2 cos 4θ ) = z + z4 Expand and simplify the LHS. Expand the RHS with the binomial theorem: 2 3 1 1 1 + 3z4 + 23 cos3 4θ = (z4 )3 + 3(z4 )2 4 4 z z z4 3 1 8 cos3 4θ = z12 + 3z4 + + 4 z z12 De Moivre’s Theorem: trig identities 11 / 13 Adrian Jannetta Introduction Powers of sine / cosine Multiple angles Summary We group the powers of z like this: 8 cos3 4θ = z12 + 1 1 + 3 z4 + z12 z4 The grouped terms inside the brackets can be expressed using the cosine function given in equation 5. Therefore: 8 cos3 4θ = (2 cos 12θ ) + 3(2 cos 4θ ) 3 = 2 cos 12θ + 6 cos 4θ 3 = cos 12θ + 3 cos 4θ 8 cos 4θ 4 cos 4θ Simplify to get cos3 4θ = De Moivre’s Theorem: trig identities cos 12θ + 3 cos 4θ 4 12 / 13 Adrian Jannetta Introduction Multiple angles Powers of sine / cosine Summary Summary To express multiple angle functions in terms of sin θ and cos θ use de Moivre’s theorem cos nθ + i sin θ = (cos θ + i sin θ )n and expand the RHS (using binomial series if necessary) and compare the real or imaginary parts to obtain an identity. To express sink θ or cosk θ in terms of multiple angle functions use the formulae choose either 1 1 or 2i sin nθ = z − 2 cos θ = z + z z and then use binomial expansions (if necessary) to find sink θ or cosk θ in terms of z. Then use these formulas 1 1 = 2 cos nθ and zn − = 2i sin nθ zn + zn zn De Moivre’s Theorem: identities angle identities. 13 / 13 Adrian Jannetta to find thetrig multiple
© Copyright 2025 Paperzz