The Graphs of other Trig Functions What is the tan(0)?_______________________ What should be observed in the graph of tangent at the x-value of 0?_______________________ Where else will these occur from [−2π , 2π ] ?____________________________ [ ] Sketch the graph of tangent of x. on the interval − 3 π , 3 π 2 2 4 3 2 1 -6.28319 -3.14159 3.14159 6.28319 -1 -2 -3 -4 What is the amplitude of tan(x)? _______________________________________ What is the period of tan(x)? __________________________________________ What is the midpoint between any two consecutive asymptotes?______________ Complete the following Table xvalue −π 2 -1.5707 -1.57 -1.4 -1.1 0 1.1 1.4 1.57 1.5707 Tan(x) −π π and . 2 2 ________________________________________________________________________ Describe the behavior of the tangent curve as x approaches ________________________________________________________________________ Based on what we know of period, what will be the period of the function y = tan (2 x ) ? ______________________________ Verify Graphically. 4 3 2 1 -6.28319 -4.71239 -3.14159 -1.5708 1.5708 3.14159 4.71239 6.28319 -1 -2 -3 -4 If we graph y = 3 ⋅ tan (2 x ) , what will be the difference if any? ________________________________________________________________________ What if we graph y = −3 ⋅ tan (2 x ) , conjecture about the graph. ________________________________________________________________________ π 2 Plot both along with the tan (x) . 2 1 -3.14159 -2.35619 -1.5708 -0.785398 0.785398 1.5708 2.35619 3.14159 -1 -2 Were your thoughts correct?_________________________________________________ The interval for tangent is usually written −π π < x < . Without graphing where will 2 2 the vertical asymptotes of y = tan (.5x) hint: solve the inequality with (.5x) taking the role of x. ____________________________________________________________ What is the period?___________________________________________________ Sketch the graphs of y = cos(x) and y = sec(x) on the same axes. 4 3 2 1 -6.28319 -3.14159 3.14159 -1 -2 -3 -4 6.28319 Complete the following table (Don’t forget that the sec(x) = 1/cos(x) ) x-value 0 .5 .75 .9 1 1.3 1.4 1.5 1.57 π 2 cos(x) sec(x) Describe the behavior for both functions as x approaches π 2 ________________________________________________________________________ ________________________________________________________________________ Explain how the table correlates to what you see graphically above: Be very Specific ________________________________________________________________________ Where else will similar behavior occur for the secant function? ________________________________________________________________________ ________________________________________________________________________ What is the period for y = sec(x)? ____________________________ Sketch the graphs of y = sin(x) and y = csc(x) on the same axes. 4 3 2 1 -6.28319 -4.71239 -3.14159 -1.5708 1.5708 -1 -2 -3 -4 3.14159 4.71239 6.28319 Complete the following table (Don’t forget that the csc(x) = 1/sin(x) ) x-value 0 .5 .75 .9 1 1.3 1.4 1.5 1.57 π 2 sin(x) csc(x) Describe the behavior for both functions as x approaches π 2 ________________________________________________________________________ ________________________________________________________________________ Explain how the table correlates to what you see graphically above: Be very Specific ________________________________________________________________________ ________________________________________________________________________ Where else will similar behavior occur for the cosecant function? ________________________________________________________________________ ________________________________________________________________________ Graph y = csc(x + π 4 ) 4 3 2 1 -6.28319 -4.71239 -3.14159 -1.5708 1.5708 3.14159 4.71239 -1 -2 -3 -4 What do you suspect that the period of y = csc(2x) is? Verify graphically. 4 3 2 1 -6.28319 -4.71239 -3.14159 -1.5708 1.5708 -1 -2 -3 -4 Does this relate to what we did before? Explain. 3.14159 4.71239 6.28319 6.28319
© Copyright 2026 Paperzz