Name ________________________________________ Date __________________ Class__________________ LESSON 11-4 Reading Strategy Follow a Procedure You can use sum and difference identities, along with the Unit Circle, to simplify expressions and find solutions. Sine Sum Identity Sine Difference Identity sin(A + B) = sinAcosB + cosAsinB sin(A − B) = sinAcosB − cosAsinB To find the value of sin105°: STEP 1: Determine whether the angle is the sum of two known angles, or the difference: 105° = 45° + 60° STEP 2: Substitute the new angles into the sum or difference identity: sin(105°) = sin45°cos60° + cos45°sin60° STEP 3: Solve: sin(105°) = sin45°cos60° + cos45°sin60° 2 1 2 3 i + i = 2 2 2 2 2 6 2+ 6 = + = 4 4 4 Identify a pair of angles whose trigonometric values are known and whose sum or difference is equal to each angle given. 1. 75° _____________________ 2. 255° ___________________________ 3. 165° _____________________ 4. 105° ___________________________ Write the following as sum or difference identities. 5. sin(45° − 30°) 6. sin(240° + 60°) _________________________________________ 7. sin(300° − 210°) ________________________________________ 8. sin(180° + 45°) _________________________________________ 9. sin(90° − 60°) ________________________________________ 10. sin(225° − 135°) _________________________________________ ________________________________________ Original content Copyright © by Holt McDougal. Additions and changes to the original content are the responsibility of the instructor. 11-34 Holt McDougal Algebra 2 m∠OAD and y = 90° − m∠OAD − x; therefore, a = y. ⎡ −1.37 2. ⎢ ⎣0.37 3. Possible answer: Triangle ABD is a right triangle, therefore, AD = AB cosa and BD = AB sina. But AB = sinx and a = y, so AD = sinxcosy and BD = sinxsiny. 4. Possible answer: In right triangle OBC, OB = cosx and BC = OBsiny = cosxsiny. From the diagram, it is clear why the length EF is, as the label indicates, equal to sin(x + y). But EF = AD + BC. Substitution of the expressions for EF, AD, and BC gives sin(x + y) = sinxcosy + cosxsiny. 5. Possible answer: Extend segment AD to intersect segment OC at a point P.The segment AP will be perpendicular to segment OC so it follows that OP = cos(x + y). But OP + PC = OC, and hence OP = OC − PC. Since OC = cosxcosy and PC = BD = sinxsiny, it follows that cos(x + y) = cosxcosy − sinxsiny. Reading Strategy 1. 30° + 45° 2. 210° + 45° 3. 135° + 30° 4. 150° + 45° 5. sin45°cos30° − cos45°sin30° 6. sin240°cos60° + cos240°sin60° 7. sin300°cos210° − cos300°sin210° 8. sin180°cos45° + cos180°sin45° 9. sin90°cos60° − cos90°sin60° 10. sin225°cos135° − cos225°sin135° 11-5 DOUBLE-ANGLE AND HALF-ANGLE IDENTITIES Practice A 7 25 b. 336 625 c. − 527 625 d. 24 7 e. − 336 527 5. 3 4 3 , , 5 5 4 2. − 3. − sin 60° ⎤ cos 60° ⎥⎦ 4 0 −3 1 1.73 24 7 24 ;− ; 25 25 7 5 39 7 5 39 ; ; 32 32 7 4. − ⎡ −0.37 b. ⎢ ⎣1.37 5. H 1. a. − 2 1 4. A 1. a. ⎡1 ⎢1 ⎣ −1.96 −0.73 ⎤ 4.60 2.73 ⎥⎦ P''(−1.37, −0.37), Q''(−1.73, 1), R''(−1.96, 4.60), and S''(−0.73, 2.73) Problem Solving ⎡cos 60° ⎢ sin 60° ⎣ − 1.73 35 17 35 ; ;− 18 18 17 6. a. sin2θ + 2sinθ cosθ + cos2θ b. 2sinθ cosθ + sin2θ + cos2θ 2 ⎤ −2⎥⎦ 4.60 1.96 c. sin 2θ + sin2θ + cos2θ d. sin 2θ + 1 2.73 ⎤ 0.73 ⎥⎦ 7. sin 2θ 2 sinθ cosθ = tanθ ; = tanθ ; 2 2 cos θ 2cos2 θ sinθ = tanθ ; tanθ = tanθ cos θ c. P'(−0.37, 1.37), Q'(1, 1.73), R'(4.60, 1.96), and S'(2.73, 0.73) Original content Copyright © by Holt McDougal. Additions and changes to the original content are the responsibility of the instructor. A52 Holt McDougal Algebra 2
© Copyright 2026 Paperzz