2. Black-body Radiation Consideranisolatedbodyinotherwiseemptyspace.Wedetecttwokindsoflightcomingfrom ittooureyes.First,thereislightthatisreflectedfromthebody.Thislightmayhaveoriginatedfromthe sun,reflectedfromthebodyandtravelledtooureyes.Thereisalsolightthatthebodyitselfproduces. Inthismodelweareinterestedonlyinthelatter,self-radiatedlight.Thisself-radiatedlightisstrongly dependentonthetemperatureofthebody.Thebestradiatorsarereferredtoasblackbodiesbecause theyturnouttobegoodabsorbersaswell.Ablackbodyabsorbsanylightthathitsitandradiateslight witharangeofwavelengthsandintensitiesthatdependsontemperature. Wecantreatblackbodyradiationasaoneboxproblem,thebodybeingthebox,anditsheat contentthestuff.Theheatcontentofthebodyisproportionaltoitstemperature𝑇.Inashorttime𝑑𝑡 thebodywillloseenergybyradiationgivenby−𝐹(𝑇) 𝑑𝑡.Weexpressthechangeinthetemperatureof thebodyas 𝑇(𝑡! + 𝑑𝑡) − 𝑇(𝑡! ) = −𝐹(𝑇) 𝑑𝑡. Thissaysthefluxofradiantenergyfromabodycausesthebodytocool. Itturnsoutthattheintensityoftheradiationdependsonwavelengthaswellason temperature.Wecanverifythisbynotingthatthecolorofanobjectchangesasitstemperature changes.Thecolorofthefilamentinalightbulbisagoodexample.Theruleforfindingthefluxfor wavelengthsintherange𝜆to𝜆 + 𝑑𝜆,andtemperature𝑇is 𝐼 𝜆 𝑑𝜆 = 2ℎ𝑐 ! 𝜆! 1 !! 𝑒 !!" 𝑑𝜆 −1 where: 𝑐 = 3×10! m/s ℎ = 6.626×10!!" Js 𝑘 = 1.38×10!!" J/K 𝑇 ≈ 300 K 𝑇 ≈ 6000K 𝜆 Speedoflight Planck’squantumofaction Boltzmann’sconstant Terrestrialobjects Surfaceofthesun Wavelength 𝐼(𝜆)𝑑𝜆istheamountofenergyemittedfromasquaremeterofsurfaceinagivendirection(or, tobeexact,perunitsolidangle),inonesecond,andinthewavelengthrange𝜆to𝜆 + 𝑑𝜆.Thisformula, calledPlanck’slaw,isoneofthegreatachievementsofhumanunderstanding.ItwasdiscoveredbyMax PlanckinOctober1900.Wewillrefertoitineachofourtoyclimatemodels. 10 8 6 I( ) (Wm 2 µm 1 Sr 1 ) 300K 275K 250K 225K 200K 4 2 0 0 10 20 30 (µm) 40 50 Figure2.1Planck’sequationasafunctionofwavelengthforarangeoftemperaturesthatmightbe foundonEarth. Planck’sequationisshowninFigure2.1forseveraldifferenttemperaturesthatmightbe observedonEarth.Theheightofanyonecurvetellsyouhowbrighttheself-radiationisateach wavelengthforablackbodyatthattemperature,andtheareaunderthecurvetellsyouthetotalenergy emitted.Noticethatthe225Kcurveliescompletelyabovethe200Kcurve,andthe250Kcurvelies completelyabovethe225Kcurve,andsoon.Thismeansthatwarmerblackbodiesemitmoretotal energy,andmoreenergyforanygivenrangeofwavelengths.Finally,notethatthecurvesarevery stronglydependentontemperature.InFigure2.1youcanseethatanincreaseintemperaturefrom 200Kto300K,afactorof1.5,resultsinanincreaseinthetotalenergyemittedbytheblackbody(i.e.the areaunderthecurve)byroughlyafactorof5.Itturnsoutthatthetotalenergyemittedbyablackbody isproportionaltothefourthpoweroftemperature: 𝐹 𝑇 = 𝜋∫ 𝐼 𝜆 𝑑𝜆 = 𝜎𝑇 ! where𝜎 = 5.67×10!! Wm-2K-4.Thefactorof𝜋comesinasaresultofintegratingoveralldirections overwhichradiationisemitted.ThisisknownastheStefan-Boltzmannlaw,and𝜎isknownasthe Stefan-Boltzmannconstant. A linear approximation Terrestrialtemperaturesarenottoodifferentfromthefreezingpointofwater.For temperaturesnearthefreezingpointwecanapproximatetheStefan-Boltzmannlawas 𝐹 𝑇 ≈ 𝐴 + 𝐵𝑇 [𝑇]=°C,𝐴 = 320Wm-2,𝐵 = 4.6Wm-2°C-1 𝐴istheenergyradiatedbyasurfaceatthefreezingpoint.𝐵istheadditionalfluxforeach degreewarmerthanthefreezingpoint.Forexample,ablackbodyat10oCradiates320 + 4.6×10 = 366Wm-2.Wewillencountertheconstant𝐵frequently.Itsetstherateatwhichthefluxofemitted radiationincreaseswithincreasingtemperature.Roughly,youneedtoincreasethesolarheatfluxby4.6 Wm-2toraisetheEarth’stemperatureonedegree. Wien’s Law InFigure2.1,eachblackbodyradiationcurvehasamaximumatsome𝜆!"# .Thepeakinthe curveshiftstolowerwavelengths(i.e.higherenergyphotons)astemperaturebecomeswarmer.Wien’s law,whichwasknownbeforePlanckfoundtheblackbodyfunction,isthattheproduct 𝑇 𝜆!"# = constant = 0.003. ItisusedtodeterminethebrightestwavelengthforabodyoftemperatureT 𝜆!"# = 0.003/𝑇. Forthesun,surfacetemperaturesareabout6000K.Therefore,thepeakintheradiationcurveis atabout𝜆!"# = 5×10!! m.Thisisinthevisiblepartofthespectrum.Itmakessense.Wecanseethe sun.Forterrestrialtemperatures,say300K,thepeakinthespectrumisatabout𝜆!"# = 10!! minthe infraredpartofthespectrum.Thisisoutsidetheportionofthespectrumthatoureyesaresensitiveto. WhenIlookatthedaffodilsinourgardenIamseeingsunlightreflectedfromtheblossoms.Iwould needsomenightvisiongogglesto“see”thethermalemissionfromtheflowers. Solartemperaturesare20timesterrestrialvalues.Wien’slawtellsusthatthewavelengthsof theself-radiationfromsolarsourceswillbe1/20timestheradiationfromterrestrialsources.Canwe makeasimilarstatementaboutthetotalenergy?TheresultfollowsfromtheStefan-Boltzmannlaw.If thetemperaturesdifferbyafactorof𝑘 thentheradiatedenergiesdifferbyafactorof𝑘 ! .Thuswe arriveattheconclusionthatasquaremeterofsolarsurfaceradiates160,000timesasmuchenergy radiatedbyasquaremeterofterrestrialsurface.Forexample,asquaremeterofEarth’ssurfaceatthe freezingpointradiatesabout320W/m2whileasquaremeterofsolarsurfaceat6000Kreleases 7.3×10! W/m2. Exercises 2.1Plottheblackbodycurveforafixedtemperature,say𝑇 = 6000K,whichisappropriateforthe surfaceofthesun.Thinkingahead,youwillwanttodrawthecurveforany𝑇.So𝑇isaparameterwe willvary,butℎ,𝑘,and𝑐reallyarefixed.Wien’slawsaysthatthemaximumintensityisatawavelength of𝜆!"# = 3000/𝑇 𝜇m.Soitseemslikelythattaking𝜆intherange𝜆!"# /5to5𝜆!"# willspanthemost activepartofthespectrum.Isuggesttaking𝑑𝜆 = 𝜆!"# /5. 2.2Whenplottedasafunctionofwavelength,thePlanckfunctionindicateshowmuchenergyis radiatedatanygivenrangeofwavelengths.Tobeprecise,theareaunderthecurvefrom𝜆! to𝜆! equals theradiatedenergyatwavelengthsbetween𝜆! and𝜆! .Foranarrowrangeofwavelengths,𝑑𝜆,thearea issimplytheareaofarectangleofheight𝐼(𝜆)andwidth𝑑𝜆.Forthetotalenergywewouldhavetoadd uptheareasofmanysuchrectangles. totalenergy= 𝐼(𝜆! ) (𝜆! − 𝜆! ) + 𝐼(𝜆! ) (𝜆! − 𝜆! ) + ⋯ Inthespreadsheetcalculationof𝐼(𝜆),the𝜆! areevenlyspaced,sothetotalenergyradiatedis totalenergy= (𝐼(𝜆! ) + … + 𝐼(𝜆! )) 𝑑𝜆. Modifyyourspreadsheettoincludethiscalculation.Makeadiagramthatillustrateswhatismeantby theareaunderthecurvefrom𝜆! to𝜆! . 2.3Theblackbodyradiationcurvehasamaximumatsome𝜆!"# .Byinspectingtheradiationcurvesfor differenttemperatures,makeatableof𝜆!"# (𝑇).Foreachtemperature,calculatetheproduct 𝑇𝜆!"# (𝑇).DoesWien’slaw, 𝑇 𝜆!"# = constant = 0.003, holdtrue? 2.4TheconstantσintheStefan-Boltzmannlawcanbeshowntoequal 𝜎= !!! ! ! !"! ! ! ! . Don’taskmehow.Wecangainsomeinsightbynotingthat𝜎 musthavedimensionsWm-2K-4. Boltzmann’sconstant𝑘hasdimensionsJK-1andistheonlysymbolaroundinvolvingK.Therefore𝜎 mustbeproportionalto𝑘 ! .ThisintroducesJ4ontherighthandside.Itwilltake3factorsofℎinthe denominatortobalancetheenergyunits,andtwofactorsof𝑐toputthingsright.Writeoutthe dimensionsofeachquantityandverifydimensionaluniformityfortheequation. 2.5Let𝑢 = 𝜆𝑘𝑇/ℎ𝑐,or𝑇 = ℎ𝑐𝑢/𝜆𝑘.ThenthePlanckformulais 𝑐! 𝐼 𝜆 = 1 𝑢 ! exp 1 −1 𝑢 ℎ! 𝑐 ! 𝑐! = 2𝜋𝑘 ! 𝑇 ! Showthat𝑢isdimensionless.Therighthandsideisafunctiononlyof𝑢.Useaspreadsheettocalculate therighthandsidefor0 < 𝑢 < 1,andverifythatithasamaximumat𝑢 = 0.2014andarea6.3.Show thatthefirstresultisequivalenttoWien’slawandthesecondresultisequivalenttotheStefanBoltzmannlaw. Plotthefunction 𝑐! 𝐼(𝑢) = 1 𝑢 ! exp 1 −1 𝑢 Therighthandsidedependsonlyon𝑢,andvaluesof𝑢aredisplayedonthehorizontalaxis.Ifweare interestedinaparticular𝑇,wecanrelabelthehorizontalaxisintermsofwavelength 𝜆 = ℎ𝑐𝑢/𝑘𝑇. Fromthispointofview,theshapeoftheblackbodycurveisalwaysthesame.Fordifferent𝑇wemust labelthehorizontalaxisdifferently. AnexcelspreadsheettogeneratePlanck’sdistributionforanytemperatureisgivenas excel2_blackbody_radiation.Afteryouhaveyourspreadsheetworking,minormodificationswillallow youtocompletetheexercises. Hints/Solutions 2.1Seecm2ex2.1Pickafixedtemperature𝑇andthenplot𝐼versus𝜆.Because𝐼issuchastrong functionoftemperatureitishardtoplot𝐼(𝜆, 𝑇 = 300 K)and𝐼(𝜆, 𝑇 = 6000 K)onthesameaxes.Use themastermodeltoplottheradiationcurvesfor𝑇 = 6000 Kandfor300K.Modifythemasterprogram togetthetotalradiationsummedoverwavelength,asafunctionof𝑇. T=6000K 3.50E-01 3.00E-01 2.50E-01 2.00E-01 1.50E-01 1.00E-01 5.00E-02 0.00E+00 0.00E+00 5.00E-07 1.00E-06 1.50E-06 2.00E-06 2.50E-06 3.00E-06 Series2 T=300K 3.50E-01 3.00E-01 2.50E-01 2.00E-01 1.50E-01 1.00E-01 5.00E-02 0.00E+00 0.00E+00 1.00E-05 2.00E-05 3.00E-05 4.00E-05 5.00E-05 6.00E-05 Series1 Comparingthesetwocurves,onerepresentingtheradiationfromthesunandtheotherrepresenting theradiationfromtheEarth,weseethatthecurveshavethesameshape.Theonlydifferenceisinhow theaxesarelabelled. Tosketchthesolarandterrestrialspectraonthesameaxes,firstdrawthecurveforthesun.It willhaveitsmaximumat𝜆,say,andanareaof𝐴,say.Nowit’seasytosketchtheterrestrialspectrum.It hasexactlythesameshapeasthesolarspectrumbutitsmaximumwillbeat20𝜆anditsareawillbe 𝐴/160000.Ifyoustartedwithahandsomecurveforthesolarspectrum,youmustplacetheterrestrial spectrumfartotherightandwithanamplitudethatistoosmalltobeseenonyourgraph.Butdon’t thinktheterrestrialradiationisunimportant. 2.2 Thedarkshadedareaequalsthe 1.20E+14 energyforthatrangeofwavelengths. 1.00E+14 8.00E+13 6.00E+13 4.00E+13 2.00E+13 0.00E+00 2.3 Wien'slaw 0.000035 0.00003 0.000025 0.00002 0.000015 0.00001 0.000005 0 0 2000 4000 6000 8000 10000 Figure2.2Plotof𝜆!"# (verticalaxis)asafunctionof𝑇(horizontalaxis). 12000 2.4Use[]todenotedimensionsofasin[k]=J/K,[h]=Js,[c]=L/s,and[T]=K. Then[k4h-3c-2T4]=J4-3K-4+4s-3+2L-2=Js-1L-2=W/m2. 2.5Theshapeoftheblackbodycurveisthesameforalltemperatures. 1/[u^5(e^1/u-1)]u=lambdakT/hc 25 20 15 10 5 0 0 0.2 0.4 0.6 0.8 1 1.2 0 0.2 0.4 0.6 0.8 1 1.2 00.511.52T=6000K 010203040T=300K Figure2.3(top)Theblack-bodyradiationcurve,plottedasafunctionofthedimensionless𝑢.Forfixed𝑇 thehorizontalaxisisproportionaltowavelengthheregivenin𝜇m.(bottom)Thefigureillustratesthat theshapeoftheblack-bodycurveisthesameforalltemperatures.Ifyouplottheblack-bodyspectrum fortwotemperaturestheonlythingthatwillbedifferentbetweenthetwoplotsistheaxislabels(see horizontalaxis).Notethatthepeakradiationoccursat10𝜇mforterrestrialtemperaturesandatabout 0.5𝜇mforsolartemperatures. .
© Copyright 2025 Paperzz