Page 1
Worksheet 1.1
Complete each statement.
1)
Two lines that intersect RQ are _________ and _________.
2)
Point P is between _______ and _______.
3)
Identify 2 other names for plane RPQ. __________ and __________.
4)
In plane RPQ, three noncollinear points are R, Q, and _______.
5)
Points M, P, R, Q, and __________ are coplanar.
6)
The line ___________ intersects plane A in exactly one point.
7)
Two other names for
XY are ____________ and ___________.
In the figure, P, Q, R, and S are in Plane N. Use what you have learned to determine whether each
statement is true or false.
8) ______
R, S, and T are collinear.
9) ______
There is only one plane that contains all the
points R, S, and Q.
10) ______
∠PQT lies in plane N.
11) ______
∠SPR lies in plane N.
12) ______
If X and Y are two points on line m, then
13) ______
Point K is on plane N.
14) ______
N contains RS .
15) ______
T lies in plane N.
16) ______
R, P, S, and T are coplanar.
17) ______
l and m intersect.
XY intersects plane N at P.
Questions 18-23 use the diagram at the right.
18) Name the intersection of plane YZT and XYT. _______________
19) Name the intersection of plane WXT and plane YZT. _______________.
20) Are the points Z, V, and W collinear? ________________
21) Name the planes that intersect at point W. ______________.
22) Name three lines that intersect at point Y. __________ __________ ___________
23) Do the planes YXT, WXT, and WVT intersect in one line? _____________.
Page 3
.AME $ATE
*À>VÌVi
,%33/.
&ORUSEWITHPAGESn
i>ÃÕÀiÊÌ
iÊi}Ì
ÊvÊÌ
iÊÃi}iÌÊÌÊÌ
iÊi>ÀiÃÌÊÌiÌ
ÊvÊ>ÊViÌiÌiÀ°
Ê £° Ó° ΰ 1ÃiÊÌ
iÊ-i}iÌÊ``ÌÊ*ÃÌÕ>ÌiÊÌÊwÊ`ÊÌ
iÊ`V>Ìi`Êi}Ì
°
Ê {°Ê &IND24
x° &IND"#
Ȱ &IND-.
*ÌÊÌ
iÊ}ÛiÊ«ÌÃÊÊ>ÊVÀ`>ÌiÊ«>i°Ê/
iÊ`iÌiÀiÊÜ
iÌ
iÀÊÌ
iÊ
iÊÃi}iÌÃÊ>i`Ê>ÀiÊV}ÀÕḭ
Ê Ç° !"#$Ê
]
]
!"zAND#$z
n° -./0
]
]
-.
zAND/0z
Ê ° %&'(Ê
]
]
%'zAND&(z
£ä° 2345
]
]
23
zAND45z
'EOMETRY
#HAPTER0RACTICE7ORKBOOK
Page 4
#OPYRIGHT¥BY-C$OUGAL,ITTELLADIVISIONOF(OUGHTON-IFmIN#OMPANY
.AME $ATE
*À>VÌViÊ CONTINUED
,%33/.
&ORUSEWITHPAGESn
1ÃiÊÌ
iÊÕLiÀÊiÊÌÊwÊ`ÊÌ
iÊ`V>Ìi`Ê`ÃÌ>Vi°
Ê
Ê
££° !"
£Ó° !$
£Î° #$
£{° "$
£x° #%
£È° !%
£Ç° "%
£n° $%
ÊÌ
iÊ`>}À>]Ê«ÌÃÊ]Ê]Ê
]Ê>`ÊÊ>ÀiÊVi>À]Ê«ÌÃÊ
]Ê8]Ê9]Ê>`Ê<Ê
>ÀiÊVi>À]ÊÊÊ
ÊÊ
8ÊÊ9<]ÊÊÊx{]Ê89ÊÊÓÓ]Ê>`Ê8<ÊÊÎΰÊ`Ê
Ì
iÊ`V>Ìi`Êi}Ì
°
Ê£° !"
ÊÓä° "$
ÊÓ£° #9
#OPYRIGHT¥BY-C$OUGAL,ITTELLADIVISIONOF(OUGHTON-IFmIN#OMPANY
ÊÓÓ° #$
ÊÓΰ 8#
ÊÓ{° #:
`ÊÌ
iÊ`V>Ìi`Êi}Ì
°
ÊÓx°Ê &IND34
ÓȰ &IND!#
 &IND.0
Page 5
'EOMETRY
#HAPTER0RACTICE7ORKBOOK
.AME $ATE
*À>VÌViÊ CONTINUED
,%33/.
&ORUSEWITHPAGESn
]
*ÌÊÊÃÊLiÌÜiiÊÊ>`ÊÊÊÊʰzÊ1ÃiÊÌ
iÊ}ÛiÊvÀ>ÌÊÌÊÜÀÌiÊ>Ê
iµÕ>ÌÊÊÌiÀÃÊvÊݰÊ-ÛiÊÌ
iÊiµÕ>̰Ê/
iÊwÊ`ÊÊ>`ʰ
X
Ó° (*]
z
ÊÓn°Ê (*X
*+X
+(
*+X
+(
ÊÎä°Ê (*X
룡 (*X
*+X
+(
*+X
+(X
BEGINNINGOFTHETRAILANDHIKEFORMINUTESATARATEOFMILESPERHOUR(OW
MUCHFARTHERDOYOUNEEDTOHIKETOREACHTHEENDOFTHETRAIL
Ê
Ê
'EOMETRY
#HAPTER0RACTICE7ORKBOOK
Page 6
#OPYRIGHT¥BY-C$OUGAL,ITTELLADIVISIONOF(OUGHTON-IFmIN#OMPANY
]
ÊÎÓ° (IKING /NTHEMAP!"zREPRESENTSATRAILTHATYOUAREHIKING9OUSTARTFROMTHE
.AME ,%33/.
$ATE
*À>VÌVi
&ORUSEWITHPAGESn
]
Ê £° ,INE23BISECTS01zATPOINT2&IND21IF01CENTIMETERS
]
Ê Ó° ,INE*+BISECTS-.zATPOINT*&IND-.IF*-]
zFEET
]
Ê Î° 0OINT4BISECTS56z
&IND56IF54]
zYARDS
]
Ê {° 0OINT#BISECTS!"z&IND#"IF!"METERS
ÊÌ
iÊ`>}À>]ÊÊÃÊÌ
iÊ`«ÌÊvÊÌ
iÊÃi}ḭÊ`ÊÌ
iÊ
`V>Ìi`Êi}Ì
°
Ê x°Ê &IND,.
Ȱ &IND!-
ǰ &IND-2
#OPYRIGHT¥BY-C$OUGAL,ITTELLADIVISIONOF(OUGHTON-IFmIN#OMPANY
`ÊÌ
iÊVÀ`>ÌiÃÊvÊÌ
iÊ`«ÌÊvÊÌ
iÊÃi}iÌÊÜÌ
ÊÌ
iÊ
}ÛiÊi`«Ìð
n° 3AND4
£ä° (AND)
° ,AND0
££° 'AND(
]
1ÃiÊÌ
iÊ}ÛiÊi`«ÌÊ,Ê>`Ê`«ÌÊÊvÊÊ,-ÊzÌÊwÊ`ÊÌ
iÊVÀ`>ÌiÃÊvÊ
Ì
iÊÌ
iÀÊi`«Ìð
£Ó° 2-
£Î° 2-
Ê£{° 2-
£x° 2-
Page 7
'EOMETRY
#HAPTER0RACTICE7ORKBOOK
.AME ,%33/.
$ATE
*À>VÌViÊ CONTINUED
&ORUSEWITHPAGESn
`ÊÌ
iÊi}Ì
ÊvÊÌ
iÊÃi}ḭÊ,Õ`ÊÌÊÌ
iÊi>ÀiÃÌÊÌiÌ
ÊvÊ>ÊÕ̰
ʣȰ
£Ç°
Ê£n°
£°
ÊÓä°
Ó£°
/
iÊi`«ÌÃÊvÊÌÜÊÃi}iÌÃÊ>ÀiÊ}Ûi°Ê`Êi>V
ÊÃi}iÌÊi}Ì
°
/iÊÜ
iÌ
iÀÊÌ
iÊÃi}iÌÃÊ>ÀiÊV}ÀÕḭ
]
]
ÊÓÓ°Ê !"
Ê z!"
Óΰ 23z23
]
]
#$z#$
45z45
]
Ó{° +,z+,
]
-.z-.
'EOMETRY
#HAPTER0RACTICE7ORKBOOK
]
Óx° /0z
/0
]
12z12
Page 8
#OPYRIGHT¥BY-C$OUGAL,ITTELLADIVISIONOF(OUGHTON-IFmIN#OMPANY
`ÊÌ
iÊi}Ì
ÊvÊÌ
iÊÃi}ḭÊ/
iÊwÊ`ÊÌ
iÊVÀ`>ÌiÃÊvÊÌ
iÊ`«ÌÊ
vÊÌ
iÊÃi}ḭ
.AME ,%33/.
$ATE
*À>VÌViÊ CONTINUED
&ORUSEWITHPAGESn
ÊÓÈ°Ê $ISTANCES 9OURHOUSEANDTHEMALLAREMILESAPARTONTHESAMESTRAIGHTROAD
Ê
4HEMOVIETHEATERISHALFWAYBETWEENYOURHOUSEANDTHEMALLONTHESAMEROAD
>° $RAWANDLABELASKETCHTOREPRESENTTHISSITUATION(OWFARISYOURHOUSEFROM
THEMOVIETHEATER
L° 9OUWALKATANAVERAGESPEEDOFMILESPERHOUR!BOUTHOWLONGWOULDIT
TAKEYOUTOWALKTOTHEMOVIETHEATER
ÊÝiÀVÃiÃÊÓÇqÓ]ÊÕÃiÊÌ
iÊ>«°Ê/
iÊV>ÌÃÊvÊÌ
iÊÌÜÃÊÊÌ
iÊ>«Ê
>Ài\ÊÕÀÊä]Êä®]Ê
i>ÀwÊi`Ê£ä]ÊÓ®]Ê>iÊ
ÌÞÊx]ÊÇ®]Ê>`ÊiÌÜÊ£]Ê{®°Ê
/
iÊVÀ`>ÌiÃÊ>ÀiÊ}ÛiÊÊið
ÊÓǰ &INDTHEDISTANCEBETWEENEACHPAIROFTOWNS
2OUNDTOTHENEARESTTENTHOFAMILE
#OPYRIGHT¥BY-C$OUGAL,ITTELLADIVISIONOF(OUGHTON-IFmIN#OMPANY
ÊÓn°Ê 7HICHTWOTOWNSARECLOSESTTOGETHER
7HICHTWOTOWNSAREFARTHESTAPART
ÊÓ°Ê 4HEMAPISBEINGUSEDTOPLANAMILE
Ê
Ê
Ê
Ê
MARATHON7HICHOFTHEFOLLOWINGPLANS
ISTHEBESTROUTEFORTHEMARATHON%XPLAIN
° $UNKIRKTO#LEARlELDTO!LLENTOWNTO$UNKIRK
° $UNKIRKTO#LEARlELDTO,AKE#ITYTO!LLENTOWNTO$UNKIRK
° $UNKIRKTO,AKE#ITYTO#LEARlELDTO$UNKIRK
° $UNKIRKTO,AKE#ITYTO!LLENTOWNTO$UNKIRK
Page 9
'EOMETRY
#HAPTER0RACTICE7ORKBOOK
F. Radicals
To simplify a radical, we need to find the greatest perfect square factor of the number under the
radical sign (the radicand) and then take the square root of that number.
Ex 1 :
Ex 2 : 4 90
72
36 ⋅ 2
4 ⋅ 9 ⋅ 10
6 2
4 ⋅ 3 ⋅ 10
12 10
Ex 3 :
Ex 3 : 48
48
16 3
4 3
4 12
OR
2 12
2 4 3
2⋅2⋅ 3
4 3
PRACTICE
Simplify each radical.
1.
121
2.
90
3.
175
4.
288
16
Page 10
This is not simplified
completely because
12 is divisible by 4
(another perfect
square)
5.
486
6. 2 16
7. 6 500
8. 3 147
9. 8 475
10.
17
Page 11
125
9
Page 12
Page 13
Name: _________________________________ Date: _____________________ Period:______
MDL Geometry
1.1 – 1.3 Review WS
Identify the following:
1. AB = __________________ 2. KL = __________________
Draw an example of AB :
Draw an example of KL :
3. JM = _________________
Draw an example of JM :
4. AB = ____________________(what does this mean)
5. What is the Ruler Postulate? How is it used to find the distance on a number line?
_____________________________________________________________________________
_____________________________________________________________________________
Use the diagram to the right to answer the following questions.
Page 14
11. Given the number line, find the indicated length.
12. What is the distance formula? _________________________
13. What is the midpoint formula? _________________________
14. Find the distance and midpoint between the two points T (3, 4) and W (2, 7).
Midpoint = __________
TW = __________
15. Use the given endpoint P(11,-5) and midpoint M(-4,-4) of PT to find the coordinates of the other
endpoint T.
Point T = ___________
16. Line t bisects CD at point M, CM = 3x and MD = x + 8. Find CD. Hint: Draw a picture!!!
CD = _________
Page 15
17. Point L is between R and M. If RL = 3x + 4, LM = x + 1, and RM = 5x + 2, find the value of x and the
lengths of RL, LM, and RM. Hint: Draw a picture!!!
X = _______
RL = _______
LM = _______
RM = _______
18. Make sure you know the following definitions:
Midpoint - ______________________________________________________________________
Line - _________________________________________________________________________
Collinear Points - _________________________________________________________________
Ray - __________________________________________________________________________
Postulate - _____________________________________________________________________
Coplanar Points - _________________________________________________________________
Point - ________________________________________________________________________
Line Segment - __________________________________________________________________
Plane - ________________________________________________________________________
Segment bisector - _______________________________________________________________
Page 16
Page 17
Page 18
Page 19
Page 20
Page 21
.AME ,%33/.
$ATE
*À>VÌVi
&ORUSEWITHPAGESn
£Ê>`ÊÓÊ>ÀiÊV«iiÌ>ÀÞÊ>}iÃÊ>`ÊÓÊ>`ÊÎÊ>ÀiÊÃÕ««iiÌ>ÀÞÊ
>}iðÊÛiÊÌ
iÊi>ÃÕÀiÊvÊ£]ÊwÊ`ÊÓÊ>`Êΰ
£° M
Ó° M
ΰ M
{° M
`Ê
Ê>`Ê
°
Ê x°
ǰ
Ȱ
ÊÝiÀVÃiÃÊnq£Ó]ÊÕÃiÊÌ
iÊ`>}À>°Ê/iÊÜ
iÌ
iÀÊÌ
iÊ>}iÃÊ>ÀiÊ
ÛiÀÌV>Ê>}iÃ]Ê>Êi>ÀÊ«>À]ÊÀÊiÌ
iÀ°Ê
Ê n°Ê AND
#OPYRIGHT¥BY-C$OUGAL,ITTELLADIVISIONOF(OUGHTON-IFmIN#OMPANY
° AND
£ä° AND
££° AND
£Ó° AND
ʣΰ 4HEMEASUREOFONEANGLEISTHREETIMESTHEMEASUREOFITSCOMPLEMENT&INDTHE
MEASUREOFEACHANGLE
Ê£{° 4WOANGLESFORMALINEARPAIR4HEMEASUREOFONEANGLEISTIMESTHEMEASUREOF
THEOTHERANGLE&INDTHEMEASUREOFEACHANGLE
Ê£x° 4HEMEASUREOFONEANGLEISLESSTHANTHEMEASUREOFITSSUPPLEMENT&INDTHE
MEASUREOFEACHANGLE
Page 22
'EOMETRY
#HAPTER0RACTICE7ORKBOOK
.AME ,%33/.
$ATE
*À>VÌViÊ CONTINUED
&ORUSEWITHPAGESn
`ÊÌ
iÊÛ>ÕiÃÊvÊÝÊ>`ÊÞ°
ʣȰ
£Ç°
£n°
Ê£°
Óä°
Ó£°
/iÊÜ
iÌ
iÀÊÌ
iÊÃÌ>ÌiiÌÊÃÊ>Ü>ÞÃ]ÊÃiÌiÃ]ÊÀÊiÛiÀÊÌÀÕi°Ê
ÊÓÓ°Ê 4WOCOMPLEMENTARYANGLESFORMALINEARPAIR
ÊÓÎ°Ê 4HESUPPLEMENTOFANOBTUSEANGLEISANACUTEANGLE
ÊÓ{°Ê !NANGLETHATHASASUPPLEMENTALSOHASACOMPLEMENT
Ê>`ÊÊ>ÀiÊV«iiÌ>ÀÞÊ>}iðÊ`ÊÊ>`ʰ
ÊÓx°Ê M!X
z
z M"Xz
ÊÓÇ°Ê M!X
z
z M"Xz
'EOMETRY
#HAPTER0RACTICE7ORKBOOK
ÓȰ M!X
z M"X
Ón° M!X
z M"X
Page 23
#OPYRIGHT¥BY-C$OUGAL,ITTELLADIVISIONOF(OUGHTON-IFmIN#OMPANY
.AME ,%33/.
$ATE
*À>VÌViÊ CONTINUED
&ORUSEWITHPAGESn
Ê>`ÊÊ>ÀiÊÃÕ««iiÌ>ÀÞÊ>}iðÊ`ÊÊ>`ʰ
ÊÓ°Ê M!X
z
Îä° M!X
z M"Xz
z M"X
ÊΣ°Ê M!X
z
ÎÓ° M!X
z M"Xz
z M"X
,vÊÌÀÕÃÃiÃÊV>Ê
>ÛiÊÃiÛiÀ>Ê`vviÀiÌÊ>ÞÕÌðÊ/
iÊ`>}À>ÊLiÜÊÃ
ÜÃÊ
iÊÌÞ«iÊvÊÀvÊÌÀÕÃÃÊ>`iÊÕÌÊvÊLi>ÃÊvÊÜ`°Ê1ÃiÊÌ
iÊ`>}À>ÊÌÊ
`iÌvÞÊÌÜÊ`vviÀiÌÊiÝ>«iÃÊvÊÌ
iÊ`V>Ìi`ÊÌÞ«iÊvÊ>}iÊ«>À°ÊÊÌ
iÊ
`>}À>]Ê
Ê>`Ê
Ê>ÀiÊÀ}
ÌÊ>}ið
ÊÎÎ°Ê 3UPPLEMENTARYANGLES
#OPYRIGHT¥BY-C$OUGAL,ITTELLADIVISIONOF(OUGHTON-IFmIN#OMPANY
ÊÎ{°Ê #OMPLEMENTARYANGLES
ÊÎx°Ê 6ERTICALANGLES
ÊÎÈ°Ê ,INEARPAIRANGLES
ÊÎÇ°Ê !DJACENTANGLES
ÊÎn° !NGLEOFELEVATION !NANGLEOFELEVATION
ISTHEANGLEBETWEENTHEHORIZONTALLINE
ANDTHELINEOFSIGHTOFANOBJECTABOVETHE
HORIZONTAL)NTHEDIAGRAMAPLANEISmYING
HORIZONTALLYACROSSTHESKYAND234
REPRESENTSTHEANGLEOFELEVATION(OW
ISTHEANGLEOFELEVATIONAFFECTEDASTHE
PLANEmIESCLOSERTOTHEPERSON%XPLAIN
Page 24
'EOMETRY
#HAPTER0RACTICE7ORKBOOK
Name: ____________________________________________ Date:_______________ Period:___
MDL Geometry
Chapter 1 Test Review #1
Show all work (either on the worksheet or on separate paper that is attached).
20. Draw an example of vertical angles and a linear pair. Don’t forget to label your drawing.
Page 25
21. Given that <JKM and <MKO make up a right angle. Solve for x, m<JKM, and m<MKO if
m<JKM = 2x +7 and m<MKO = 3x + 8.
22. What is another name for <JKM and <MKO from problem 24?
23. Define the following terms:
a.
Point - _____________________________________________________________
b. Line - ______________________________________________________________
c. Plane - _____________________________________________________________
d. Collinear points - _____________________________________________________
e. Coplanar points - ______________________________________________________
f. Line segment - _______________________________________________________
g. Ray - ______________________________________________________________
h. Postulate - __________________________________________________________
i. Midpoint - __________________________________________________________
j. Segment bisector - ____________________________________________________
k. Angle bisector - ______________________________________________________
l. Supplementary angles - _________________________________________________
m. Complementary angles - ________________________________________________
n. Adjacent angles - _____________________________________________________
o. Linear pair - _________________________________________________________
p. Vertical angles - ______________________________________________________
Page 26
Page 27
Name:_________________________________________ Date: _________________ Period:____
MDL Geometry
Chapter 1 Test Review #2
Read each question carefully. Show all work!
1.
The endpoints of two segments are given. Find the exact length of the segment.
CD = C(3, 4) , D(1, -1)
CD = ________
2.
Using the points from #1, find the midpoint of CD
Midpoint = ________
3.
The midpoint of LM is O(2, 1). One endpoint is L(1, 4). Find the coordinates of endpoint M.
Point M = _________
In exercises 4 – 8, use the diagram.
Page 28
9. Given that < ABC and < DEF are complementary, find the value of x and the measure of each angle if
m< ABC = (4x + 3) and the m< DEF = (x -8)
x = _______
m< ABC = _______
m< DEF = _______
10. Linear pairs are a special type of ______________________angles whose sum is _______.
11. < LMN and < NMR are a linear pair. If m< LMN = (7x + 10) and m< NMR = 3x , find the
value of x and the measure of each angle. Draw a picture!
x = _______
m< LMN = _______
m< NMR = _______
12. What word means “to cut in half”? ______________
13. The m< DEF is bisected by EB . Find the value of x and the measures of the angles if m< DEB = 5x
and m< BEF = (x +16) .
x = ______
m< DEB = _______
m< BEF = _______
Page 29
Page 35
Page 36
© Copyright 2026 Paperzz