7-5 Practice A

Name
Date
LESSON
Practice A
7-5
Polynomials
Class
Find the degree and number of terms of each polynomial.
1. 4w
2. 9x 3 ⫹ 2x
2
2
Degree:
3
Degree:
1
Terms:
3. 4p 5 ⫺ p 3 ⫹ p 2 ⫹ 11
2
Terms:
5
Degree:
4
Terms:
Fill in each blank with monomial, binomial, or trinomial.
trinomial
monomial
binomial
4. A
5. A
6. A
is a polynomial with three terms.
is a polynomial with one term.
is a polynomial with two terms.
Write each polynomial in standard form.
Then, give the leading coefficient.
2
7. 12 ⫹ 3x ⫺ x
8. g 4 ⫺ 2g 3 ⫺ g 5
9. k 2 ⫹ k 4 ⫺ k 3 ⫹ 1
3x 2 x 12
g 5 g 4 2g 3
k4 k3 k2 1
3
1
1
First, classify each polynomial by its degree (linear, quadratic, cubic, or quartic).
Then, classify it by its number of terms (monomial, binomial, or trinomial ).
10. 109z
11. 3x ⫹ 11
2
quadratic monomial
12. b 3 ⫺ 2 ⫹ 2b 4
linear binomial
quartic trinomial
13. Complete the table by evaluating the polynomial for each value of z.
Polynomial
z0
z1
z2
z 1
z 2
2z ⫹ 3z ⫺ 3
3
2
13
2
5
2
RIN
14. The surface area of a cylinder is approximated by the
2
polynomial 6r ⫹ 6rh, where r is the radius and
h is the height of the cylinder. Find the approximate
surface area of the cylinder at right.
HIN
72 in
Copyright © by Holt, Rinehart and Winston.
All rights reserved.
a107c07-5_pr.indd 35
2
35
Holt Algebra 1
12/26/05 7:44:06 AM
Process Black
*À>V̈ViÊ
0OLYNOMIALS
--"
LJx
LJx
&INDTHEDEGREEANDNUMBEROFTERMSOFEACHPOLYNOMIAL
&INDTHEDEGREEANDNUMBEROFTERMSOFEACHPOLYNOMIAL
W X X
$EGREE
4ERMS
Ó
£
Î
$EGREE
P P P Ó
4ERMS
{
4ERMS
ÌÀˆ˜œ“ˆ>
“œ˜œ“ˆ>
Lˆ˜œ“ˆ>
!
!
G G G K K K µÕ>`À>̈Vʓœ˜œ“ˆ> B B Z
Z
Z
œÌʏ}iLÀ>Ê£
PPP
x
™
x
Î
{
x
ÓÊGÊÓÊÊnG
xÊHÊÎÊÊÊHÊÓÊÊHÊÊ£Î
nÊXÊÓÊÊÓXÊÊn
SS SDS
Y Y Y YFORY
AA??
AFORA
!CERTAINCOMPANYSPROFITINDOLLARSCANBEMODELEDWITHTHEPOLYNOMIAL
XXWHEREXISTHENUMBEROFITEMSPRODUCEDANDSOLD
??
A 7HATISTHEPROFITIFTHEYPRODUCEANDSELLOFTHEIRPRODUCTS
B 7HATISTHEPROFITIFTHEYPRODUCEANDSELLOFTHEIRPRODUCTS
C %VALUATETHECOMPANYSPROFITPOLYNOMIALFORX7HATDOESTHIS
NUMBERREPRESENT
Óää
&INDTHEDEGREEOFXYX
&INDTHEDEGREEOFABA
XYX
W W
$
EGREEOFTHE
POLYNOMIALIS
ABA
W W
7RITEXX X INSTANDARDFORM
XXX
V
V
V
V
&INDTHEDEGREEOFEACHTERM
XXX 7RITETHETERMSINORDEROFDEGREE
4HELEADINGCOEFFICIENTIS
&INDTHEDEGREEOFEACHMONOMIAL
M N XXY
XXYY
7RITEEACHPOLYNOMIALINSTANDARDFORM4HENGIVETHELEADING
COEFFICIENT
AK4up.indd 75
XYY
Copyright © by Holt, Rinehart and Winston.
All rights reserved.
&INDTHEDEGREEOFEACHPOLYNOMIAL
XXX
X X X XY
XYZ
fÇxä
f{nää
ÌÊÀi«ÀiÃi˜ÌÃʅœÜʓÕV…Ê“œ˜iÞÊ̅iÞÊ܈ÊœÃiÊ­fÓää®ÊvœÀʘœÌÊ
«Àœ`ÕVˆ˜}ʜÀÊÃiˆ˜}Ê>˜Þ̅ˆ˜}°Ê
#OPYRIGHT©BY(OLT2INEHARTAND7INSTON
!LLRIGHTSRESERVED
$EGREEOFTHE
POLYNOMIALIS
4HESTANDARDFORMOFAPOLYNOMIALISWRITTENWITHTHETERMSINORDERFROMTHEGREATEST
DEGREETOTHELEASTDEGREE4HECOEFFICIENTOFTHEFIRSTTERMISTHELEADINGCOEFFICIENT
Óä
Óx
£x
4HEEXPONENTSAREAND
4HEDEGREEOFTHEMONOMIAL
IS
4HEDEGREEOFTHEPOLYNOMIALISTHEDEGREEOFTHETERMWITHTHEGREATESTDEGREE
Ó
x
n
MM FORM
AB
4HEEXPONENTSAREAND
4HEDEGREEOFTHEMONOMIAL
IS
%VALUATEEACHPOLYNOMIALFORTHEGIVENVALUE
œÌʏ}iLÀ>Ê£
,iÌi>V…
0OLYNOMIALS
XY
µÕ>À̈VÊÌÀˆ˜œ“ˆ>
µÕ>`À>̈VÊLˆ˜œ“ˆ>
Ç̅Ê`i}ÀiiÊ«œÞ˜œ“ˆ>
sW W
4HEDEGREEOFTHEMONOMIALISTHESUMOFTHEEXPONENTSINTHEMONOMIAL
&INDTHEDEGREEOFX Y &INDTHEDEGREEOFA B
#LASSIFYEACHPOLYNOMIALACCORDINGTOITSDEGREEANDNUMBEROFTERMS
TT
!MONOMIALISANUMBERAVARIABLEORAPRODUCTOFNUMBERSANDVARIABLESWITHWHOLE
NUMBEREXPONENTS!POLYNOMIALISAMONOMIALORASUMORDIFFERENCEOFMONOMIALS
3IMPLIFYANDWRITEEACHPOLYNOMIALINSTANDARDFORM4HENGIVE
THELEADINGCOEFFICIENT
µÕ>À̈VÊ«œÞ˜œ“ˆ>
Ç
#OPYRIGHT©BY(OLT2INEHARTAND7INSTON
!LLRIGHTSRESERVED
RRRR
SXDXX £Îx°Èʓ
LJx
H H H
£nǰxʓ
,%33/.
BBBB
B (OWHIGHISTHEEGGABOVETHEGROUNDAFTERSECONDS
&INDTHEDEGREEANDNUMBEROFTERMSOFEACHPOLYNOMIAL
µÕ>À̈VÊÌÀˆ˜œ“ˆ>
A (OWHIGHISTHEEGGABOVETHEGROUNDAFTERSECONDS
*À>V̈ViÊ
0OLYNOMIALS
G GG G {
Î
x
Z
Ó
MM FORM
#OPYRIGHT©BY(OLT2INEHARTAND7INSTON
!LLRIGHTSRESERVED
{
WW
µÕ>`À>̈VÊLˆ˜œ“ˆ>
HIN
T T ™
YYYFORY
£ä
WW??
WFORW
!NEGGISTHROWNOFFTHETOPOFABUILDING)TSHEIGHTINMETERSABOVE
THEGROUNDCANBEAPPROXIMATEDBYTHEPOLYNOMIALTT WHERETISTHETIMESINCEITWASTHROWNINSECONDS
ÇÓÊʈ˜ÊÊÓÊ
LJx
%VALUATEEACHPOLYNOMIALFORTHEGIVENVALUE
µÕ>À̈VÊÌÀˆ˜œ“ˆ>
RIN
--"
Ó
n
T 4HESURFACEAREAOFACYLINDERISAPPROXIMATEDBYTHE
POLYNOMIALR RHWHERERISTHERADIUSAND
HISTHEHEIGHTOFTHECYLINDER&INDTHEAPPROXIMATE
SURFACEAREAOFTHECYLINDERATRIGHT
#LASSIFYEACHPOLYNOMIALBYITSDEGREEANDNUMBEROFTERMS
Î
£
£
ˆ˜i>ÀÊLˆ˜œ“ˆ>
Z
{ÊXÊ ÊÊÎÊXÊ ÊÊXÊÊÓ ÎÊJÊÎÊÊ{ÊJÊÓÊÊxäJÊÊÇ {
Î
Ó
xÊKÊ ÊÊ{ÊKÊ ÊÊÎÊKÊ ÊÊÈK KKKK
#OMPLETETHETABLEBYEVALUATINGTHEPOLYNOMIALFOREACHVALUEOFZ
0OLYNOMIAL
JJJ
X
ZZ X X X
Î
{
ISAPOLYNOMIALWITHTWOTERMS
Z A AA Ó
7RITEEACHPOLYNOMIALINSTANDARDFORM4HENGIVETHELEADING
COEFFICIENT
&IRSTCLASSIFYEACHPOLYNOMIALBYITSDEGREELINEARQUADRATICCUBICORQUARTIC
4HENCLASSIFYITBYITSNUMBEROFTERMSMONOMIALBINOMIALORTRINOMIAL
YY ISAPOLYNOMIALWITHONETERM
ÎÊXÊÓÊÊXÊÊ£Ó
x
{
Î
GÊ ÊÊÊGÊ ÊÊÓÊGÊ Ê
{
Î
Ó
KÊ ÊÊÊKÊ ÊÊÊKÊ ÊÊ£
Î
ISAPOLYNOMIALWITHTHREETERMS
7RITEEACHPOLYNOMIALINSTANDARDFORM
4HENGIVETHELEADINGCOEFFICIENT
X X
H H
x
$EGREE
&ILLINEACHBLANKWITHMONOMIALBINOMIALORTRINOMIAL
!
*À>V̈ViÊ
0OLYNOMIALS
--"
œÌʏ}iLÀ>Ê£
X X X #OPYRIGHT©BY(OLT2INEHARTAND7INSTON
!LLRIGHTSRESERVED
75
XX
X X X
XX
(OLT!LGEBRA
Holt Algebra 1
12/26/05 7:43:29 AM