Lenarz - Math 262 Strategy for Integration Strategy for integration 1. Look to see if the integrand is a standard derivative that you already know. 2. Simplify the integrand if possible. Expand, factor or use trig identities to see if a method jumps out. 3. Look for a substitution (including rationalizing substitutions). 4. Use the form of the integral to decide what method to use (a) Products of powers of sin & cos (sec & tan or csc & cot) (b) Rational functions i. divide if improper ii. factor denominator if possible, then try partial fractions iii. complete the square, then try a substitution (c) Radicals i. trigonometric substitution based on the form of the radical ii. less obvious rationalizing substitutions (similar to trig sub) iii. if a quadratic under radical, try completing the square 5. Integration by parts 6. Try substitution or integration by parts again with less obvious choices for u; manipulate the integrand; relate to previous problems; use several methods together. Z x Example 1: ex+e dx Solution: Notice first that Z e x+ex Z dx = x ex ee dx Use the substitution u = ex so that du = ex dx. Thus we have Z Z x x+ex e dx = ex ee dx Z = eu du = eu + C x = ee + C Math 262 Page 2 Z Example 2: e √ 3 x dx √ Solution: Use the rationalizing substitution t = 3 x so that t3 = x and 3t2 dt = dx. Then we have Z Z √ 3x et (3t2 ) dt e dx = Z = 3t2 et dt Now use integration by parts with u = 3t2 dv = eu du so that v = et du = 6t dt Then we have Z 2 t 2 t Z 3t e dt = 3t e − 6tet dt and use integration by parts again with dv = eu du u = 6t so that v = et du = 6 dt Then we have 2 t 3t e − Z t 2 t t 6te dt = 3t e − (6te − Z 6et dt) = 3t2 et − 6tet + 6et + C = (3t2 − 6t + 6)et + C √ √ √ 3 3 = 3e x ( x2 − 2 3 x + 2) + C Math 262 Page 3 Z Example 3: 3x2 − 2 dx x3 − 2x − 8 Solution: Let u = x3 − 2x − 8 so that du = 3x2 − 2 dx. Thus we have Z Z 3x2 − 2 1 dx = du 3 x − 2x − 8 u = ln |u| + C = ln |x3 − 2x − 8| + C Z Example 4: 3x2 − 2 dx x2 − 2x − 8 Solution: This is an improper fraction so we divide. x2 − 2x − 8 So we have that Notice that | 3x2 3x2 3 + 0x − 2 − 6x − 24 6x + 22 3x2 − 2 6x + 22 =3+ 2 2 x − 2x − 8 x − 2x − 8 6x + 22 6x + 22 = − 2x − 8 (x + 2)(x − 4) x2 so the partial fraction decomposition will have form A B + x+2 x−4 A B 6x + 22 = + (x + 2)(x − 4) x+2 x−4 A(x − 4) + B(x + 2) = (x + 2)(x − 4) 6x + 22 = A(x − 4) + B(x + 2) 6x + 22 = Ax − 4A + Bx + 2B 6x + 22 = (A + B)x + (−4A + 2B) So we know that A+B =6 and − 4A + 2B = 22 Math 262 Page 4 which implies that A = − 53 and B = 23 . 3 Thus 23 − 53 6x + 22 = + 3 x2 − 2x − 8 x+2 x−4 So we have Z 3x2 − 2 dx = x2 − 2x − 8 Z 5 1 23 1 3− + dx 3 x+2 3 x−3 23 5 ln |x − 4| + C = 3x − ln |x + 2| + 3 3 Z π/3 Example 5: π/4 ln(tan x) dx sin x cos x 2 x Solution: Let u = ln(tan x) so that du = sec dx = sin x1cos x dx. Our limits of integratan x tion become π π ln(tan x) −−−−−→ ln tan = ln 1 = 0 4 4 √ π π ln(tan x) −−−−−→ ln tan = ln 3 3 3 Thus we have Z π/3 π/4 ln(tan x) dx = sin x cos x = = = = Z ln √ 3 u du 0 ln √3 1 2 u 2 0 i 1h √ 2 (ln 3) − 0 2 2 1 1 ln 3 2 2 1 (ln 3)2 8 Math 262 Page 5 Z √ Example 6: 1 + ln x dx x ln x Solution: Let u = Thus we have √ 1 + ln x so that u2 = 1 + ln x, ln x = u2 − 1 and 2u du = Z √ Z u (2u) du −1 Z 2u2 = du u2 − 1 1 + ln x dx = x ln x u2 This is an improper fraction so we divide. 2 2 u − 1 | 2u 2u2 So we have that + 0u 2 + 0 − 2 2 2 2u2 = 2 + u2 − 1 u2 − 1 Notice that u2 2 2 = −1 (u + 1)(u − 1) so the partial fraction decomposition will have form B A + u+1 u−1 2 A B = + (u + 1)(u − 1) u+1 u−1 A(u − 1) + B(u + 1) = (u + 1)(u − 1) 2 = A(u − 1) + B(u + 1) 2 = Au − A + Bu + B 2 = (A + B)u + (−A + B) So we know that A+B =0 and −A+B =2 which implies that A = −1 and B = 1. Thus u2 2 −1 1 = + −1 u+1 u−1 1 x dx. Math 262 Page 6 So we have Z 2u2 du = u2 − 1 = = = = Z 2 2+ 2 du u −1 Z 1 1 2− + du u+1 u−1 2u − ln |u + 1| + ln |u − 1| + C u − 1 +C 2u + ln u + 1 √ √ 1 + ln x − 1 +C 2 1 + ln x + ln √ 1 + ln x + 1
© Copyright 2025 Paperzz