Vectors and Dot Product Find a· b. 1) a = 2, 4 , b = 2, 5 A) 4, 20 B) 4, 9 C) 16 D) 24 2) a = 3, -1 , b = -3, 1 A) -9, -1 B) 0, 0 C) -10 D) 8 3) a = 5, -10 , b = 6, 5 A) 11, -5 B) 80 C) 30, -50 D) -20 4) a = 4, -6 , b = 5, -7 A) 62 B) 22 C) 9, -13 D) 20, 42 5) a = -1, -1 , b = -3.5, 2 A) -4.5, 1 B) 5.5 C) 3.5, -2 D) 1.5 6) a = 7i - 4j, b = 4i + 3j A) 11, -1 B) -40 C) 16 D) 28, -12 7) a = 4i + 8j, b = -2i + 3j A) -8, 24 B) 2, 11 C) 32 D) 16 8) a = 6j, b = i + 4j A) 0, 24 B) 1, 24 C) 24 D) -24 B) 4 3 C) 6 D) 5 2 10) v = -7, 3 A) 58 B) 10 C) 2i 10 D) -4 11) v = 5j A) 25 B) 5 C) -5 D) 0 12) v = 6, 8 A) 14 B) 10 C) -2 D) 100 Use the dot product to find v . 9) v = 1, 7 A) 8 Find the angle between the given vectors to the nearest tenth of a degree. 13) u = -5, 8 , v = -4, 8 A) -7.3° B) 2.7° C) 5.4° 14) u = -2, -1 , v = 5, -9 A) 102.5° B) 46.3° C) 92.5° D) 15.4° D) 36.3° PreCalculus 15) u = 5i - 9j, v = 5i + j A) 65.9° B) 90.4° C) 100.1° D) 45.2° 16) u = i + 7j, v = -i + 8j A) 13.6° B) 68.9° C) 27.8° D) 15.3° 17) u = 4, -3 , v = -6, -8 A) 90° B) 45° C) 180° D) 0° C) 210° D) 240° 18) u = 5 cos π π 4π 4π i + 5 sin j, v = cos i + sin j 6 6 3 3 A) 120° B) 150° Write the vector u as a sum of two orthogonal vectors, one of which is the vector projection of u onto v, projvu . 19) u = 8, 6 , v = 2, 4 A) 2, 4 + 6, 2 B) 3, 6 + 5, -2.5 C) 4, 8 + 4, -2 D) -1, -2 + 9, -4.5 20) u = 5, -5 , v = 6, 8 A) 3, 4 + -8, 6 C) 1.5, 2 + 3.5, -7 B) -0.6, -0.8 + 5.6, -4.2 D) 6, 8 + -1, -13 21) u = -3, -3 , v = -9, -3 A) 3, 1 + -6, -4 C) -3.6, -1.2 + 0.6, -1.8 B) -6, -2 + 3, -9 D) -9, -3 + 6, 0 Determine whether the vectors u and v are parallel, orthogonal, or neither. 22) u = 10, 0 , v = 0, -9 A) Orthogonal B) Neither C) Parallel 23) u = 3, 0 , v = 0, -3 A) Neither B) Parallel C) Orthogonal 24) u = 6, -2 , v = 8, 24 A) Parallel B) Orthogonal C) Neither 25) u = 7, 2 , v = 21, 6 A) Neither B) Parallel C) Orthogonal 26) u = 8, 4 , v = 10, 7 A) Parallel B) Neither C) Orthogonal Solve the problem. 27) What is the minimum force required to prevent a ball weighing 24.0 lb from rolling down a ramp which is inclined 27.2° with the horizontal? A) 11 lb B) 10.7 lb C) 5.5 lb D) 21.3 lb Calin M. Agut - 2012 PreCalculus 28) A constant force F = 16, 31 moves an object along a vector D = 10, 2 , where units are in pounds and feet. Find the work done. A) 98 foot-pounds B) -98 foot-pounds C) 355.8 foot-pounds D) 222 foot-pounds 29) A constant force F = 41i + 25j moves an object along a vector D = 19i - 12j, where units are in pounds and feet. Find the work done. A) 479 foot-pounds B) -1079 foot-pounds C) 1079 foot-pounds D) 1079.1 foot-pounds 30) Find the work done by a force F of 10 pounds acting in the direction 2, 5 in moving an object 6 feet from (0, 0) to (6, 0). A) ≈ 31.57 foot-pounds B) ≈ 120 foot-pounds C) ≈ 22.28 foot-pounds D) ≈ 55.71 foot-pounds Calin M. Agut - 2012 Answer Key Testname: 4_DOT_PRODUCT 1) D 2) C 3) D 4) A 5) D 6) C 7) D 8) C 9) D 10) A 11) B 12) B 13) C 14) C 15) C 16) C 17) A 18) B 19) C 20) B 21) C 22) A 23) C 24) B 25) B 26) B 27) A 28) D 29) A 30) C Calin M. Agut - 2012
© Copyright 2026 Paperzz