Chapter 7 Exercises page 84 1a- x > 2 b- x ≤ -2 c- -0.5 < t < 1 d- -2 < y < 8 e- -2 < m < 0 2a- -9 < 8 < 10 true since -9 < 8 and 10 > 8 b- -3 > -10 true c- -15 ≤ -21 false since -15 > 21 d- 6 > 0 > -11 true e- (-1/2)2 ≥ 1/2 false since (-1/2)2 = 1/4 < 1/2 f- 23 < 32 true since 23 = 8 < 32 = 9 g- -2.5 < 0.5 < 1.5 true 3a- x – 2 ≥ 2 x≥2+2 → x≥4 b- m/6 < -0.5 m < -0.5 x 6 → m < -3 c- 3 ≤ -y/2 3 x 2 ≤ -y → -6 ≥ y d- 2 – x > 0 -x > -2 → x < 2 e- 4 > y + 4 4–4>y → y<0 4a- 5(x – 3) > 3(x – 10) 5x – 15 > 3x – 30 2x > -15 → x > -15/2 Then 5 is a solution b- 6(2x – 4) ≥ 0 12x – 24 ≥ 0 → x ≥ 2 Then 5 is a solution c- 2(3 – x) < -2x + 7 6 – 2x < -2x + 7 0 < 1 → true for all values of x Then 5 is a solution d- 4/5 – 5x < 2 -5x < 2 – 4/5 -5x < 6/5 5x > -6/5 → x > -6/25 Then 5 is a solution 5a- 5(x – 3) > 3(x – 10) 5x – 15 > 3x – 30 2x > -15 → x > -15/2 b- -3x – 7 ≤ 4 -3x ≤ 4 + 7 x ≥ 11/3 c- -4(2x – 4) = -12 -8x + 16 ≥ -12 -8x ≥ -12 – 16 x ≤ 28/8 → x ≤ 7/2 d- 2(3x – 7) > 5x – 12 6x – 14 > 5x – 12 x>2 6a5 + x ≤ 4x – 1 -7x + 8 ≥ 6x – 20 2 ≤ -5/2 2≤0 2 ≤ -4 → → false false false 6≤x → -13x ≥ 28 2≤x x ≤ 28/3 2 ≤ 7/2 and 7/2 ≤ 28/3 → 7/2 is a solution b- x – 4 ≥ 2x – 6 3x – 8 ≥ x – 10 2≥x x ≥ -1 x<7 x > -1 -5/2 < 7 true and -5/2 > -1 false 0 < 7 true and 0 > -1 true → 0 is a solution 7/2 < 7 true and 7/2 > -1 true → 7/2 is a solution -4 < 7 true and -4 > -1 false d- 2 + 8x ≥ 6x – 20 3x + 7 > 5x + 30 -4 + 6 ≥ 2x – x → 3x – x ≥ -10 + 8 → 2 ≥ -5/2 true and -5/2 ≥ -1 false 2 ≥ 0 true and 0 ≥ -1 true → 0 is a solution c- x + 3 < 10 → 2(4x – 5) > x – 17 → → → true → → 2x ≥ -22 -2x >23 → → x ≥ -11 x < -23/2 -5/2 ≥ -11 true and -5/2 < -23/2 false 0 ≥ -11 true and 0 < -23/2 false -4 ≥ -11 true and -4 < -23/2 false 7/2 ≥ -11 true and 7/2 < -23/2 false 7a- x + 3 > 5x → 2x + 7 < x – 4 → 3 > 4x x < -11 → → x < 3/4 false x < -11 b- 2x – 4 < -3(x – 7) 2(x + 1) < -2 + x → → 2x – 4 < -3x + 21 2x + 2 < -2 + x c- x + 2 > 3x → -x – 3 > x + 18 → 2x < 1 → -2x > 21 a- 3x + 4 > 2(x – 4) 2x + 10 < x + 7 → → → → x<5 x < -4 x < 1/2 x < 21/2 8- → -12 < x < -3 x > -12 x < -3 x belongs to ]-12, -3[ b- 4/3x + 8 ≤ 3/2x + 10 → 4(5 – x) ≤ x + 17 → → x ≥ 3/5 3x + 4 > 2x – 8 → 2x – x < 7 – 10 → → 4/3x – 3/2x ≤ 10 – 8 → 20 – 4x ≤ x + 17 → x belongs to [3/5, +∞[ x ≥ -12 x ≥ 3/5 c- 3x + 4/5 > 2x – 1 -2/3 + 5x < 3x + 7 → → x > -1 -4/5 2x > 7 + 2/3 → → x > -9/5 x > 23/6 → → x≥0 x ≤ 12/7 → x > 23/6 or x belongs to ]23/6, +∞[ d- x ≥ 0 → 4 + 3/2x ≤ x/3 + 6 x≥0 → x≥ 0 3/2x – x/3 ≤ 6 – 4 x belongs to [0, 12/7] e- x – 4 ≤ 5/2x + 13/2 2x- 23/2 ≥ x/2 + 5 → → x – 5/2x ≤ 13/2 + 4 2x – x/2 ≥ 5 + 23/2 → → x ≥ -7 x ≥ 11 → x ≥ 11 or x belongs to [11, +∞[ f- x – 4 ≤ 5x/2 → 2x – 3/2 ≥ x/2 + 5 -3x/2 ≤ 4 → 3x/2 ≥ 5 + 3/2 → → x ≥ 13/3 or x belongs to [13/3, +∞[ 9a- integer that precedes n : n – 1 integer that follows n : n + 1 b- n – 1 < n < n + 1 c- n + 1 > n > n – 1 x ≥ -8/3 x ≥13/3 d- (n – 1) + (n) + (n + 1) > 13 (n – 1) + (n + 1) < 15 →n=5 So, n – 1, n, n + 1 → → → 4, 5, 6 3n > 13 2n < 15 → → n > 13/3 n < 15/2 Chapter 7 Problems page 86 1a- Sum = 360 degrees Angle CLU is obtuse → CLU > 180 We have sum of all angles = 360 → CLU +LCB + CBU + BUL = 360 CLU + 3x – 6 + 2x + x = 360 CLU = 360 – 6x + 6 CLU = 354 – 6x Then 354 – 6x > 18 -6x > 18 – 354 -6x > -336 x < 56 BCL < 80 3x – 6 < 80 3x < 86 x < 86/3 Values of x are the common values (shaded part) → x < 86/3 3a- Using comparison method: y = 2m – 3x y = 11 – 2x → 2m – 3x = 11 – 2x 2m – 11 = x → x = 2m – 11 Substitute in equation (2): → 2(2m – 11) + y = 11 4m – 22 + y = 11 y = 33 – 4m b- x > 0 y>0 → → 2m – 11 > 0 33 – 4m > 0 → → m > 11/2 m < 33/4 The intersection is the solution (shaded part) → 11/2 < m < 33/4 4a- age of ziad = 45 age of wife = 38 age of son = 12 let x be the number of years → 45 + x > 3(12 + x) 45 + x > 36 + 3x -2x > -9 x > 9/2 age of ziad less than twice his wife → 45 + x < 2(38 + x) 45 + x < 76 + 2x -x < 31 x > -31 shaded part is the solution x belongs to ]-31, 9/2[ 5a- AB = 8 BC = 6 CF = 2 Dl = x b- Area of trapezoid ABCL = [(AB + LC) x BC] / 2 = (8 + 8 – x) x 6 / 2 = 48 – 3x Area of triangle ADL = (AD x DL) / 2 = 6x/2 = 3x Area of rectangle CDEF = CF x CD = 2 x 8 = 16 Area of ABCL ≤ area of ADL 48 – 3x ≤ 3x 48 ≤ 6x → x ≥ 8 Area of ABCL ≥ area of CDEF 48 – 3x ≥ 16 48 – 16 ≥ 3x 32 ≥ 3x → x ≤ 32/3 Solution: 8 ≤ x ≤ 32/3 6a- ABCD is a right trapezoid at A and D, with DC = 6, AB = 4, and AD = 10. Let M be a point on AB such that AM = x. b- Area of BMC = area of ABCD – (area of DMC + area of ABM) = (AB + CD)AD/2 – (DM.DC/2 + AM.AB/2) = (4x6)10/2 – ((10 – x)6/2 + 4x/2) = 50 – (30 – 3x + 2x) = 50 – 30 + x = 20 + x Area of DMC = DM.DC/2 = (10 – x)(6)/2 = 30 – 3x Area of AMB = AM.AB/2 = 4x/2 = 2x area of BMC < area of DMC → 20 + x < 30 – 3x → x < 10/4 area of BMC > area of AMB 20 + x > 2x x < 20 solution: x < 10/4 7a- x = 2cm b- Area(AMBG) = l.w = 3x Area(FECG) = l.w = (6 – x)(2) = 12 – 2x Area(MDEF) = l.w = (6 – x)(1) = 6 – x → Area(AMBG) < Area(FECG) Area(AMBG) > Area(MDGF) → x belongs to ]3/2, 12/5[ 8a- (u): y = 2x X Y 0 0 1 2 0 2 1 3 (v): y = x + 2 X Y 3x < 12 – 2x 3x > 6 – x → x < 12/5 x > 3/2 (w): y = 2/3x + 4 X Y 0 4 3 6 b- ‘A’ point of intersection of (u) and (v) → y = 2x y=x+2 by comparison → 2x = x + 2 x=2 substitute → y = 2x = 2(2) = 4 then A(2, 4) ‘B’ point of intersection of (u) and (w) → y = 2x y = 2/3x + 4 by comparison → 2x = 2/3x + 4 x=3 substitute → y = 2x = 2(3) = 6 then B(3, 6) ‘C’ is the point of intersection of (v) and (w) →y=x+2 y = 2/3x + 4 by comparison → x + 2 = 2/3x + 4 1/3x = 2 → x = 6 substitute → y = x + 2 = 6 + 2 = 8 then C(6, 8) c- 2x ≤ x + 2 ≤ 2/3x + 4 2x ≤ x + 2 x + 2 ≤ 2/3x + 4 → x≤2 x≤6 then x ≤ 2 or x belongs to ]-∞, 2[ d- x + 2 ≤ 2x ≤ 2/3x + 4 x + 2 ≤ 2x 2x ≤ 2/3x + 4 → x≥2 x≤3 e- x + 2 ≤ 2/3x + 4 2/3x + 4 ≤ 2x → x – 2/3x ≤ 4 – 2 2/3x – 2x ≤ -4 → -1/3x ≤ -2 -x ≤ -2 x≥6 x≥2 then x belongs to [3, 6] f- 2/3x + 4 ≤ x + 2 ≤ 2x 2/3x + 4 ≤ x + 2 x + 2 ≤ 2x → → x≤6 x≥3 then x ≥ 6 or x belongs to [6, +∞[
© Copyright 2026 Paperzz