Name ________________________________________ Date __________________ Class__________________ Review for Mastery LESSON 8-4 Factoring ax2 + bx + c When factoring ax2 + bx + c, first find factors of a and c. Then check the products of the inner and outer terms to see if the sum is b. Factor 2x2 + 11x + 15. Check your answer. 2x2 + 11x + 15 = ( x+ x+ )( Factor 3x2 − 23x + 14. Check your answer. 3x2 − 23x + 14 = ( ) x+ )( x+ ) Factors of 2 Factors of 15 Outer + Inner 1 and 2 1 and 15 1 • 15 + 2 • 1 = 17 8 1 and 3 −1 and −14 1 • (−14) + 3 • (−1) = −17 8 1 and 2 15 and 1 1 • 1 + 2 • 15 = 31 8 1 and 3 −14 and −1 1 • (−1) + 3 • (−14) = −42 8 1 and 2 5 and 3 1 • 3 + 2 • 5 = 13 8 1 and 3 −2 and −7 1 • (−7) + 3 • (−2) = −13 8 1 and 2 3 and 5 1 • 5 + 2 • 3 = 11 9 1 and 3 −7 and −2 1 • (−2) + 3 • (−7) = −23 9 Factors of 3 (x + 3) (2x + 5) Factors of 14 Outer + Inner (x − 7) (3x − 2) Check: Check: 2 (x − 7) (3x − 2) = 3x2 − 2x − 21x + 14 (x + 3) (2x + 5) = 2x + 5x + 6x + 15 = 2x2 + 11x + 15 9 = 3x2 + 23x + 14 9 1. Factor 5x2 + 12x + 4 by filling in the blanks below. Outer + Inner Factors Factors and and • + • = and and • + • = and and • + • = _____________________________________ Factor each trinomial. 2. 3x2 + 7x + 4 ________________________ 3. 2x2 − 13x + 21 _________________________ 4. 4x2 + 8x + 3 ________________________ Original content Copyright © by Holt McDougal. Additions and changes to the original content are the responsibility of the instructor. 8-30 Holt McDougal Algebra 1 Name ________________________________________ Date __________________ Class__________________ LESSON 8-4 Review for Mastery Factoring ax2 + bx + c continued When c is negative, one factor of c is positive and one is negative. You can stop checking factors when you find the factors that work. Factor 2x2 + 7x − 15. Check your answer. 2x2 + 7x − 15 = ( x+ )( x+ ) Factors of 2 Factors of −15 Outer + Inner 1 and 2 −3 and 5 1 • 5 + 2 • (−3) = −1 8 1 and 2 3 and −5 1 • (−5) + 2 • 3 = 1 8 1 and 2 −5 and 3 1 • 3 + 2 • (−5) = −7 8 1 and 2 5 and −3 1 • (−3) + 2 • 5 = 7 9 Check: (x + 5) (2x − 3) = 2x2 − 3x + 10x − 15 (x + 5) (2x − 3) = 2x2 + 7x − 15 When a is negative, factor out −1. Then factor as shown previously. Factor −5x2 + 28x + 12. Check your answer. −5x2 + 28x + 12 −1(5x2 − 28x − 12) = −1( x+ )( x+ ) Factors of 5 Factors of −12 Outer + Inner 1 and 5 −2 and 6 1 • 6 + 5 • (−2) = −4 8 1 and 5 2 and −6 1 • (−6) + 5 • 2 = 4 8 1 and 5 6 and −2 1 • (−2) + 5 • 6 = 28 8 1 and 5 −6 and 2 1 • 2 + 5 • (−6) = −28 9 Check: −1(x − 6) (5x + 2) −1(x − 6) (5x + 2) = −1(5x2 + 2x − 30x − 12) = −1(5x2 − 28x − 12) = −5x2 + 28x + 12 Factor each trinomial. 5. 3x2 − 7x − 20 ________________________ 6. 5x2 + 34x − 7 _________________________ 7. −2x2 + 3x + 5 ________________________ Original content Copyright © by Holt McDougal. Additions and changes to the original content are the responsibility of the instructor. 8-31 Holt McDougal Algebra 1 12. −1(2x + 9)(2x − 5) Reading Strategies 13. (3x + 50)(2x − 3) 14. (4x + 5)(x + 2) 15. (3k − 4)(3k − 2) 16. (8n + 11)(3n − 2) 1. 1 i 3 17. (7x + 4)(3x − 4) 18. (6p + 7)(3p − 2) 2. 1 i 12; 2 i 6; 3 i 4 19. −1(13w − 25)(w − 1) 3. minus, minus 20. (12x + 5)(x + 6) 4. ( 21. (3y + 1)(4y − 15) 5. Possible answer: 22. 4x + 5 x− x− )( ( x− )( x− ) 23. 2x − 9 inches Review for Mastery 1. Outer + Inner Factors Factors 1; 5 1; 4 1; 4; 5; 1; 9 1; 5 4; 1 1; 1; 5; 4; 21 1; 5 2; 2 1; 2; 5; 2; 12 ) Outer + Inner 3 −1 1 −12 3 i −12 + −1 i 1 = −37 No 3 −12 1 −1 3 i −1 + −12 i 1 = −15 No 3 −4 1 −3 3 i −3 + −4 i 1 = −13 No 3 −3 1 −4 3 i −4 + −3 i 1 = −15 No 3 −6 1 −2 3 i −2 + −6 i 1 = −12 No 3 −2 1 −6 3 i −6 + −2 i 1 = −20 Yes 6. (3x − 2)(x − 6) (x + 2)(5x + 2) 2. (3x + 4)(x + 1) LESSON 8–5 3. (2x − 7)(x − 3) 4. (2x + 3)(2x + 1) 5. (3x + 5)(x − 4) 6. (5x − 1)(x + 7) Practice A 1. 5; x; 5 7. −1(2x − 5)(x + 1) 2. 1; 3x; 3x; 1; 3x; 2; 1 Challenge 1. 4 −7 −15 12 15 4 5 0 2. 3 3. (6x + 1) 4. (8x − 5) 3. (x − 9)2 4 −32 −12 32 3 −8 0 4. (6x + 2)2 5. 6 is not a perfect square 6. 12x ≠ 2(2x i 6). 7. a. x + 4 in. b. 4(x + 4) in. c. 48 in. 5. (x − 1)(x + 3)(x + 5) 6. (x + 4)(2x − 1)(x − 5) 8. 3; 3 Problem Solving 3 9. 2p; 7; 2p; 7 3 10. (t + 12)(t − 12) 11. (4x5 + y)(4x5 − y) 1. (x + 3) cm 12. 20 is not a perfect square. 2. −1(4t − 4)(4t + 1) or −4(4t + 1)(t − 1); 0 feet 13. the operation between the two squares is addition. 3. (3x + 3) ft; increase of 2 ft Practice B 4. length increased by 5 ft, width increased by 7 ft 1. yes; (x + 3)2 2. yes; (2x + 5)2 4. yes; (3x − 2)2 5. C 6. F 3. no; 24x ≠ 2(6x i 4) 7. B 8. G 5. 4(2x + 3) ft; 28 ft 6. yes; (x + 4)(x − 4) 7. no; 200 is not a perfect square. Original content Copyright © by Holt McDougal. Additions and changes to the original content are the responsibility of the instructor. A17 Holt McDougal Algebra 1
© Copyright 2026 Paperzz