Test 2 Lesson 8- 12 Exact Function Value, Reference Angles

Name_______________________________
Mr. Jones
Date:____________________
Trigonometry
Test 2 Lesson 8- 12
Exact Function Value, Reference Angles, Degree Radian Conversion, Pythagorean
Identities, Radian Measure Formula
Review
1.
Find the exact function value of each using the special right triangles.
a. cos 60°
b. sin 45°
c. tan 30°
d. csc 30°
e. sec 45°
f. cot 60°
g. sin 30°
h. tan 45°
i. csc 60°
2.
Draw the given angle in standard position, draw the reference angle, and
find the exact function value of the reference angle.
a) cos 300°
c) sin -45°
b) tan 120°
d) sec 135°
e) csc
4πœ‹
3
f) sin
2πœ‹
3
g) cot
3.
11πœ‹
h) cos βˆ’
3
πœ‹
4
Convert each angle measure to radians.
a. 30°
b. 90°
c. 45°
d. 120°
e. 135°
f. 225°
g) 60°
h. 160°
i. 330°
4.
a.
d.
g. Ο€
Convert each radian measure to degrees.
πœ‹
2
2πœ‹
3
b.
e.
h.
πœ‹
c.
9
10πœ‹
f.
9
7πœ‹
2
πœ‹
5
3πœ‹
2
i. 2Ο€
5.
Find each value when the measure of the central angle ΞΈ of a circle, the
radius r, or intercepts an arc of length s are given.
a. r = 10 ft, s = 40 ft
c. r =200 in, ΞΈ =
e.
πœ‹
2
b.
r = 6 yd, s = 8 yd
d. ΞΈ = 5, s = 30 ft
A circle has a radius of 6 inches. Find the length of the arc
πœ‹
intercepted by a central angle of . Express the arc length in terms of
4
πœ‹.
6. For each given function value, find the five remaining trigonometric function
values.
a) cos ΞΈ =
b) sin ΞΈ =
1
3
√3
2
ΞΈ is in quadrant IV
ΞΈ is in quadrant I
c) cos ΞΈ = βˆ’
√2
ΞΈ is in quadrant III
2
d) sin ΞΈ = (βˆ’
√2
2
)
ΞΈ is in quadrant III.