Which properties of airborne particles are responsible for their toxicity? Jozef S. Pastuszka Chair of the Air Protection Silesian University of Technology What are atmospheric aerosols? Atmospheric aerosols (or particulate matter) are solid or liquid particles or both suspended in air with diameters between about 0.002 µm to about 100 µm. Inhalable particles include a fraction of aerosol consisting of particles of a diameter below 10 µm, which could penetrate into the airways. These particles can cause various adverse health effects (AHE) which can be divided into three groups: •Toxic (Kind and intensity of adverse health effects is depended on the dose) •Mutagenic and Carcinogenic •Allergic (Risk of cancer is depended on the dose) (Kind and intensity is rather not depended on the dose) DOSE – mass or amount of toxic substance absorbed by an organism Every substance can be toxic Toxicity of airborne particles depends on the following, well-known factors: •Dose •Size •Chemical composition Ad. Dose D > Dthreshold Fig. 1. Scheme of the preparation of the dose-effect relationship for a pollutant producing a threshold effect (Pastuszka, 2016). Studies indicate associations between short- and longterm exposure to PM and increased mortality, hospital admissions, medication use, respiratory symptoms and reduced pulmonary function. Inhaling fine particles involves the increase of the mortality rate of the general population and respiratory and cardiovascular diseases. Fig. 4. Removing aerosol particles (Baron, 2002) Fig. 3. Mechanisms of particle deposition in the respiratory tract. Particles, of diameter over 10 µm are “trapped” on the surface of the respiratory epithelium and removed from the airways by cough, or by the cilia movement. Most particles of a diameter over 5 µm are retained in the nasopharyngeal cavity and mechanically removed from the air, before they reach the lower part of the respiratory system. Particles smaller than 5 µm (especially of a size between 2.5 µm and 0.1 µm) penetrate the respiratory system. Ad. Chemical composition All heavy metals in PM (examples: V, Fe, Cu, Zn, Ba, As, Cd, Co, Cr, Mn, Ni, Pb) are considered toxic (Costa and Dreher 1997, Swaine 2000). They accumulate in body tissues (bones, kidneys, brain). Exposure to their salts or oxides can cause acute or chronic poisonings, tumors, diseases of the cardiovascular and nervous systems, and of kidneys. (Lippmann 2008); some heavy metals can weaken the immune system in humans (Goyer 1986). According to the International Agency for Research on Cancer (IARC), 48 PAH can be human or animal carcinogens. They are the first air pollutants that have been identified as carcinogens. The strength of their carcinogenicity grows with their molecular weight. Toxicity of airborne particles also depends on the following factors, only partially recognized: •Surface composition •Shape •Bioaccessibility Ad. Surface composition (1)Surface is directly accessible to biological fluids after inhalation; (2)Chemical transformations of particles in the atmosphere occur on the particle surface; Spektrometru fotoelektronów PHI 5700/660 (Physical Electronics), realizujący techniki XPS, AES, UPS, SIMS, ISS, SEM; Zakład Fizyki Ciała Stałego, Instytut Fizyki UŚ. http://www.zfcst.us.edu.pl/zfcst/index.htm Promieniowanie rentgenowskie 1885 Promieniowanie elektromagnetyczne oddziałuje z materią. Widmo promieniowania X λ min lampa rentgenowska hc E k0 widmo ciągłe min Fotoemisja + hn 0 spektrometr EF 4f7 4f6 Natezenie 8 hn 4d10 4d9 35 30 25 20 15 10 5 0 -5 Energia wiazania (eV) 140 EB (eV) widmo SPEKTROSKOPIA FOTOELEKTRONÓW WZBUDZANYCH RENTGENOWSKIMI PROMIENIAMI fotoelektron Schemat powstawania fotoelektronów. 2p3/2 powłoka L 2p1/2 hn powłoka K 2s foton hn 1s emisja fotoelektronu Warunek energetyczny emisji fotoelektronów: EK = hn - EB gdzie: EB - energia wiązania elektronu w atomie, zależna od rodzaju atomu i jego otoczenia, h - stała Plancka; h = 6,62 ·10-34 J·s, n - częstotliwość promieniowania X, EK - energia kinetyczna fotoelektronu. C 1s N a tę ż e nie [a .u.] P M2.5 P M10 O 1s Z n 2p 1/2 Mg 1s N a 1s F e 2p 1 /2 Z n 2p 3/2 NaK L L S 2s C l 2p S 2p N 1s OKLL S i 2s S i2p 1400 1200 1000 800 600 400 200 0 E ne rg ia wią z a nia [e V ] Zestawienie widm przeglądowych XPS aerozolu atmosferycznego PM10 i PM2.5 (Katowice, dach budynku IF, 7/8.12.2000). określono średnie stężenia atomowe następujących pierwiastków: F, C, O, N, Fe, S, Si, Na, Zn, I, Cu, Cl, Al, Ca, K, Mg, Pb, Ti, P i Mn. Ad. Shape Fig. 5. Electron micrograph of particles emitted from the Siersza Power Station and elemental spectra of one, selected particle (marked with the cross). (Pastuszka et al. 2014) Fig. 6. Micrograph of antophyllite asbestos fibers. Picture prepared by Rożkowicz, 2007) Fiber-like particles seem to be more toxic than spherical particles. Ad. Bioaccessibility Toxic effects of trace metals (and other chemicals) in airborne PM are only expected if the metals are biologically available. To assess bioaccessibility of these metals samples should be subjected to a batch-extraction procedure with synthetic gastric juice. New data – new knowledge •There is no threshold dose for airborne particles •Δ (AHEs) = f (ΔC) (where ΔC = C actual – C previous) independently on the level of C previous Increase of concentration of PM10 by 10 µg/m3 causes the increase of upper respiratory tract morbidity, including asthma. •Synergistic effects •Ultrafine particles CONCLUSION Although the aerosol studies have been performing for almost 100 years there are a few open questions and some unclear phenomena which should be explained - explained by you !
© Copyright 2026 Paperzz