Exercise1.6 x .Find f −1 (x) and identify the domain and range of ƒ -1. As a check, x−3 show that ƒ(ƒ -1(x)) = ƒ -1(ƒ(x)) = x. 32. f (x) = (a)Tofind f −1 (x) : Step1:Solveforxintermsofy. x y= ⇒ y( x − 3) = x ⇒ y x − 3y = x ⇒ (y − 1) x = 3y x−3 2 3y ⎛ 3y ⎞ ⇒ x = ⇒ x=⎜ y −1 ⎝ y − 1 ⎟⎠ Step2:Interchangexandy. 2 ⎛ 3x ⎞ y=⎜ = f −1 (x) ⎝ x − 1 ⎟⎠ (b)Tofindthedomainandrangeof f −1 (x) : Thedomainof f (x) is: x ≥ 0 and x ≠ 9 (since x − 3 ≠ 0 ),i.e. ( 9,∞ ) ∪ [ 0,9 ) ,sothe rangeof f −1 (x) isalso ( 9,∞ ) ∪ [ 0,9 ) . If 0 ≤ x < 9 ,then 0 ≤ x < 3 ⇒ x − 3 < 0 .Hence f (x) = x ≤ 0 . x−3 x > 1 . x−3 Therefore,therangeof f (x) is ( −∞,0 ] ∪ (1,∞ ) ,whichmeansthatthedomainof If x > 9 ,then x > 0 and x − 3 > 0 ⇒ x > x − 3 > 0 .Hence f (x) = f −1 (x) isalso ( −∞,0 ] ∪ (1,∞ ) . (c)Toshowthat ƒ(ƒ -1(x)) = ƒ -1(ƒ(x)) = x: f ( f −1 (x)) = ⎛ 3x ⎞ ⎜⎝ ⎟ x − 1⎠ 2 2 ⎛ 3x ⎞ ⎜⎝ ⎟ −3 x − 1⎠ . Onthedomainof f −1 (x) ( −∞,0 ] ∪ (1,∞ ) ,wehave 3x ≥ 0 ,so x −1 3x 3x 3x f ( f −1 (x)) = x − 1 = = = x . 3x − 3 3x − 3(x − 1) 3 x −1 2 ⎛ x ⎞ 2 3 ⎜ ⎟ ⎛ ⎞ 3 x x − 3 −1 And f ( f (x)) = ⎜ ⎟ =⎜ ⎟⎠ = x . x x − ( x − 3) ⎝ ⎜ − 1⎟ ⎝ x−3 ⎠
© Copyright 2026 Paperzz