Problem 7.27 Use phasors to simplify each of the following expressions into a single term (*hint: see Problem 7.26): (a) υ1 (t) = 12 cos(6t + 30◦ ) − 6 cos(6t − 45◦ ) (b) υ2 (t) = −3 sin(1000t − 15◦ ) − 6 sin(1000t + 15◦ ) + 12 cos(1000t − 60◦ ) (c) υ3 (t) = 2 cos(377t + 60◦ ) − 2 cos(377t − 60◦ ) (d) υ4 (t) = 10 cos 800t + 10 sin 800t Solution: (a) υ1 (t) = 12 cos(6t + 30◦ ) − 6 sin(6t − 45◦ ) ◦ ◦ V1 = 12e j30 − 6e− j45 = 12 cos 30◦ + j12 sin 30◦ − 6 cos 45◦ + j6 sin 45◦ = 6.15 + j10.24 ◦ = 11.95e j59.0 . υ (t) = 11.95 cos(6t + 59.0◦ ). (b) υ2 (t) = −3 sin(1000t − 15◦ ) − 6 sin(1000t + 15◦ ) + 12 cos(1000t − 60◦ ) = 3 cos(1000t + 75◦ ) + 6 cos(1000t + 105◦ ) + 12 cos(1000t − 60◦ ) ◦ ◦ ◦ V2 = 3e j75 + 6e j105 + 12e− j60 = 3 cos 75◦ + j3 sin 75◦ + 6 cos 105◦ + j6 sin 105◦ + 12 cos 60◦ − j12 sin 60◦ = 5.22 − j1.70 ◦ = 5.49e− j18.0 υ2 (t) = 5.49 cos(1000t − 18.0◦ ). (c) υ3 (t) = 2 cos(377t + 60◦ ) − 2 cos(377t − 60◦ ) = 2 cos(377t + 60◦ ) + 2 cos(377t + 120◦ ) ◦ ◦ V3 = 2e j60 + 2e j120 = 2 cos 60◦ + j2 sin 60◦ + 2 cos 120◦ + j2 sin 120◦ = j3.46 ◦ = 3.46e j90 υ3 (t) = 3.46 cos(377t + 90◦ ) = −3.46 sin 377t. (d) υ4 (t) = 10 cos 800t + 10 sin 800t = 10 cos 800t + 10 cos(800t − 90◦ ) All rights reserved. Do not reproduce or distribute. © 2016 National Technology and Science Press ◦ V4 = 10 + 10e− j90 = 10 + 10 cos 90◦ − j10 sin 90◦ = 10 + 0 − j10 = 10(1 − j) √ ◦ = 10 2 e− j45 υ4 (t) = 14.14 cos(800t − 45◦ ). All rights reserved. Do not reproduce or distribute. © 2016 National Technology and Science Press
© Copyright 2025 Paperzz