Precise measurements of the W mass at the Tevatron and indirect constraints on the Higgs mass Rafael Lopes de Sá for the CDF and DØ Collaborations March 11, 2012 Rencontres de Moriond QCD and High Energy Interactions Precise measurement of the W-boson mass with the CDF II detector arXiv:1203.0275 Measurement of the W Boson Mass with the D0 Detector arXiv:1203.0293 R. Lopes de Sá (Stony Brook University) W Mass at the Tevatron March 2012 1 Motivation Electroweak theory The W boson mass is not an input parameter, but can be calculated πα M2 = √ MW 1 − W (1 + ∆r) 2 MZ 2Gµ H t Loop Corrections ∆r(MZ , MH , mt , αs , . . .) W+ W+ W W b̄ Indirect dependence δMH = 13 GeV [114 → 127] δmt = 1.8 GeV [172.4 → 174.1] (5) δ(∆αHAD ) = 0.0002 Current theoretical uncertainty R. Lopes de Sá (Stony Brook University) δMW −6.2 M eV 10.8 M eV −3.6 M eV 4 M eV W Mass at the Tevatron SM prediction known to complete 2-loop order (and some 3-loop parts) Phys.Rev.D69:053006,2004 March 2012 2 Motivation CDF Run 0/I 80.436 ± 0.081 D0 Run I 80.478 ± 0.083 CDF Run II 80.413 ± 0.048 Tevatron 2007 80.432 ± 0.039 D0 Run II 80.402 ± 0.043 W boson mass (GeV) Direct Measurements (before February 2012) CMS excl. Atlas excl. 80.42 80.38 LEP excl. 80.36 80.420 ± 0.031 LEP2 average 80.376 ± 0.033 80.34 World average 80.399 ± 0.023 80.32 References: SM prediction: Phys.Rev.D69:053006,2004 July 09 80.2 80.4 mW (GeV) R. Lopes de Sá (Stony Brook University) 80.6 MH = 122.5 MH = 127.0 80.4 Tevatron 2009 80 68% Tevatron excl. Top Mass: 173.2±0.9 GeV (arXiv:1107.5255) 80.3 W Mass at the Tevatron 165 170 175 180 185 Top quark mass (GeV) March 2012 3 Motivation Global Electroweak Fit (before February 2012) Precision EW Measurements (Tevatron, LEP and SLD data) W boson mass and width Z boson mass, total and partial width Z pole asymmetries and sin θW Indirect measurement of the Higgs boson mass MH = 92+34 −26 GeV (TEV EWWG and LEP EWWG – July, 2011) Does not include LHC direct exclusion. R. Lopes de Sá (Stony Brook University) W Mass at the Tevatron March 2012 4 CDF Detector General purpose detector. For this analysis, the important subdetectors are: Central Drift Chamber immersed in a 1.4T solenoid. Provides accurate lepton momentum measurement and position measurement. Electromagnetic Calorimeter. Lead-aluminium-scintillator calorimeter. Provides shower energy measurement as well as position measurement via wire chamber embedded at the EM shower maximum. Central tracker single muon resolution: 3.2% (for pT = 45 GeV ) R. Lopes de Sá (Stony Brook University) W Mass at the Tevatron March 2012 5 DØ detector General purpose detector. For this analysis, the important subdetectors are: Central Tracker. Silicon and scintillating fiber trackers immersed in a 2T solenoid provide accurate position measurement. Electromagnetic Calorimeter. Highly segmented uranium-liquid argon calorimeter with good energy resolution and coverage. Electromagnetic calorimeter single electron energy resolution (with E = 45 GeV ): 3.33% at η = 0. Average over central cryostat with W → eν angular spectrum: 4.16%. R. Lopes de Sá (Stony Brook University) W Mass at the Tevatron March 2012 6 Measurement Strategy The Tevatron was a pp̄ collider with 1.96 T eV of energy. In a hadron collision, it is impossible to know the parton system initial longitudinal momentum and, therefore, to measure the longitudinal momentum of the neutrino from the W boson decay. The transverse momenta carry part of the mass information. Both CDF and DØ measurements use binned likelihood fits to extract the value of the W boson mass from the following kinematical distributions: Transverse mass mT = p 2 (pT (`)pT (ν) − p ~T (`) · p ~T (ν)) Lepton transverse momentum pT (`) Neutrino transverse momentum pT (ν) el ec tr on pW T peT /T E Underlying Event uT ec tr itr el R. Lopes de Sá (Stony Brook University) on Hadronic Recoil W Mass at the Tevatron March 2012 7 Event Selection CDF analysis DØ analysis −1 Analyzed 2.2 f b Analyzed 4.3 f b−1 (1 f b−1 analyzed before) . Uses W → eν and W → µν decay channels. Uses W → eν decay channel. Central leptons |η| < 1 with 30 < pT < 55 GeV Central electrons |η| < 1.05 with pT > 25 GeV Missing transverse energy / T < 55 GeV 30 < E Missing transverse energy / T > 25 GeV E Transverse mass 60 < mT < 100 GeV Transverse mass 50 < mT < 200 GeV Hadronic recoil momentum uT < 15 GeV Hadronic recoil momentum uT < 15 GeV CDF 2.2 f b−1 DØ 4.3 f b−1 (+1 f b−1 ) W → eν candidates 470, 126 1, 677, 394 R. Lopes de Sá (Stony Brook University) W → µν candidates 624, 708 – W Mass at the Tevatron Total 1, 094, 834 1, 677, 394 2, 177, 224 March 2012 8 Calibration Strategies Full GEANT detector simulations are not fast nor accurate enough to describe the kinematical distributions used to measure the W boson mass. Both CDF and DØ develop parametrized fast simulations of the detector response to W → `ν events. The parametrizations are calibrated with data, using very different strategies. CDF strategy DØ strategy Detailed model of lepton interactions at the central tracker. Precise alignment using cosmic rays. Momentum scale calibrated using J/ψ → µµ, Υ → µµ and Z → µµ mass fits. Use calibrated momentum scale and E/p distribution in W → eν events to calibrate the calorimeter energy scale. R. Lopes de Sá (Stony Brook University) W Mass at the Tevatron Detailed model of the calorimeter response to electrons and photons. Detailed model of the underlying energy flow. Detailed model of efficiencies. Calibrate the calorimeter energy scale using the dielectron invariant mass and angular distribution in Z → ee decays (electron energy scale α and energy offset β). March 2012 9 Calibration Results ∫ L dt ≈ 2.2 fb -1 CDF II ∆ p/p ∫ L dt ≈ 2.2 fb -1 CDF II events / 0.01 -0.001 20000 χ2/dof = 18 / 22 -0.0015 J/ ψ →µ µ data (stat. only) 10000 Υ →µ µ data (stat. only) Z→µ µ data (stat. only) combined ∆ p/p (stat. ⊕ syst.) for W →µ ν events -0.002 0 0.2 0.4 0.6 µ <1/p > (GeV-1) 0 Offset, β (GeV) T 0.3 0.15 0 1 L<0.72 0.72<L<1.4 1.4<L<2.2 L>2.2 1.01 1.02 1.03 1.04 1.05 Scale, α (L in 1032 cm−2 s−1 ) R. Lopes de Sá (Stony Brook University) 1.2 1.4 1.6 E/p (W→eν) DØ tests the calibration method doing a closure test with GEANT simulation treated as data. The results are consistent with the input value of MW within statistical uncertainty (≈ 6 M eV ) for a sample equivalent to 24 f b−1 ! D0 Run II, 4.3 fb-1 0.225 0.075 1 CDF momentum scale and DØ energy scale precision: ≈ 0.01% (!!!) W Mass at the Tevatron March 2012 10 Z Mass Fits A very strict test of the calibration procedure ∫ L dt ≈ 2.2 fb -1 events / 0.5 GeV CDF II preliminary 4000 MZ = (91180 ± 12stat) MeV All values consistent with the precisely measured value at LEP. MZ = 91188 ± 2 M eV χ2/dof = 30 / 30 2000 0 70 80 90 100 110 mµµ (GeV) MZ (µµ) = 91180 ± 12(stat) ± 10(syst) M eV ∫ L dt ≈ 2.2 fb events / 0.5 GeV Events/0.25 GeV -1 CDF II preliminary 1000 MZ = (91230 ± 30stat) MeV χ2/dof = 42 / 38 500 1700 80 90 100 Fast MC 850 0 70 110 mee (GeV) Fit Region χ2/d.o.f. = 153/159 75 80 85 90 95 100 105 110 mee, GeV 4 -1 MZ (ee) ± 17(stat) M eV D0 Run = II, 4.3 fb91193 W Mass at the Tevatron χ MZ (ee) = 91230 ± 30(stat) ± 14(syst) M eV R. Lopes de Sá (Stony Brook University) Data 1275 425 0 70 D0 Run II, 4.3 fb-1 2 March 2012 11 Systematic uncertainties Comparison of systematic uncertainties in the mT (`, ν) measurement (values in MeV) Source CDF mT (µ, ν) CDF mT (e, ν) DØ mT (e, ν) Experimental – Statistical power of the calibration sample. Lepton Energy Scale 7 10 16 Lepton Energy Resolution 1 4 2 Lepton Energy Non-Linearity 4 Lepton Energy Loss 4 Recoil Energy Scale 5 5 Recoil Energy Resolution 7 7 Lepton Removal 2 3 Recoil Model 5 Efficiency Model 1 Background 3 4 2 W production and decay model – Not statistically driven. PDF 10 10 11 QED 4 4 7 Boson pT 3 3 2 R. Lopes de Sá (Stony Brook University) W Mass at the Tevatron March 2012 12 CDF Results Method (2.2 f b−1 ) mT (µ, ν) pT (µ) / T (µ, ν) E Combination MW (MeV) 80379 ± 16(stat) 80348 ± 18(stat) 80406 ± 22(stat) (2.2 f b−1 ) R. Lopes de Sá (Stony Brook University) Method (2.2 f b−1 ) MW (MeV) mT (e, ν) 80408 ± 19(stat) pT (e) 80393 ± 21(stat) / T (e, ν) E 80431 ± 25(stat) 80387 ± 19 M eV (syst + stat) W Mass at the Tevatron March 2012 13 35000 30000 D0 Run II, 4.3 fb -1 DATA FAST MC W->τν Z->ee MJ 25000 20000 15000 Fit Region χ2/dof = 37.4/49 10000 60000 DATA FAST MC W->τν Z->ee MJ 40000 30000 Fit Region χ2/dof = 26.7/31 10000 60 70 80 90 0 25 100 mT, GeV D0 Run II, 4.3 fb -1 30 35 40 45 50 55 60 pe , GeV T 2 1 4 3 D0 Run II, 4.3 fb-1 2 1 0 -1 0 -1 -2 -3 -2 -3 -4 50 D0 Run II, 4.3 fb -1 50000 χ χ 4 3 70000 20000 5000 0 50 Events/0.5 GeV Events/0.5 GeV DØ Results 60 70 80 90 Method (4.3 f b−1 ) mT (e, ν) pT (e) / T (e, ν) E Combination mT ⊕ pT (4.3 f b−1 ) Combination (5.3 f b−1 ) R. Lopes de Sá (Stony Brook University) -4 25 100 mT, GeV 30 35 40 45 50 55 60 pe , GeV T MW (MeV) 80371 ± 13(stat) 80343 ± 14(stat) 80355 ± 15(stat) 80367 ± 26(syst + stat) 80375 ± 23(syst + stat) W Mass at the Tevatron March 2012 14 Comparing Results 10 9 CDF (2.2/fb) MET(e,nu) 8 CDF (2.2/fb) pT(e) 7 CDF (2.2/fb) mT(e,nu) 6 CDF (2.2/fb) MET(mu,nu) 5 CDF (2.2/fb) pT(mu) 4 CDF (2.2/fb) mT(mu,nu) 3 D0 (4.3/fb) MET(e,nu) 2 D0 (4.3/fb) pT(e) 1 D0 (4.3/fb) mT(e,nu) 0 CDF 2.2/fb combination (stat+syts) D0 4.3/fb combination (stat+syts) D0 MET not included in the combination 80250 80300 80350 80400 80450 Fitted W boson mass (MeV) Very consistent results obtained with completely different calibration strategies! (uncertainties from individual measurements are only statistical) R. Lopes de Sá (Stony Brook University) W Mass at the Tevatron March 2012 15 Single Experiment Uncertainty W Mass uncertainty (MeV) Tevatron Single Experiment Uncertainties 400 DZero (e) 350 300 CDF (e + mu) 250 200 150 100 50 102 103 104 Integrated Luminosity (pb-1) Both experiments are getting close to the model and theoretical plateau. Some work need to be done in this front as well! R. Lopes de Sá (Stony Brook University) W Mass at the Tevatron March 2012 16 Theoretical and modeling issues Use a wider lepton η–acceptance to be less sensitive to PDF uncertainties. It has been done before at the Tevatron (DØ RunI). Phys.Rev.D62:092006,2000 Asymmetry Ideas and developments to improve the model and theoretical uncertainties in the W mass measurement 0.2 -0 DØ, L=0.75 fb-1 ETe>25 GeV -0.2 EνT>25 GeV CTEQ6.6 central value Explore lepton longitudinal momentum to extract the W mass. Concrete example: JHEP 1108:023,2011 Study QED uncertianties in the measurement using NLO QCD ⊕ EW generators. Two recent implementations in the POWHEG framework. arXiv:1202.0465, arXiv:1201.4804 R. Lopes de Sá (Stony Brook University) W Mass at the Tevatron MRST04NLO central value -0.4 CTEQ6.6 uncertainty band -0.6 0 Asymmetry Use Tevatron W lepton charge asymmetry to constrain the u/d PDF instead of low energy experiments. Available: CT10W PDF set. Phys.Rev.D82:074024,2010 0.5 1 1.5 2 2.5 3 2.5 3 |ηe| 0.2 -0 (a) DØ, L=0.75 fb-1 -0.2 25<EeT<35 GeV ETν >25 GeV -0.4 CTEQ6.6 central value MRST04NLO central value -0.6 CTEQ6.6 uncertainty band -0.8 0 0.5 1 1.5 2 |ηe| March 2012 17 Higgs Constraints CDF Run I 80.436 ± 0.081 D0 Run I 80.478 ± 0.083 D0 Run II (prel.) 80.376 ± 0.023 CDF II (prel.) 80.387 ± 0.019 W boson mass (GeV) (Preliminary) New World Average CMS excl. MH = 122.5 Atlas excl. 80.42 Tevatron excl. 80.4 68% MH = 127.0 80.38 LEP excl. 80.36 Tevatron 2012 (prel.) 80.387 ± 0.017 LEP2 average 80.376 ± 0.033 World average (prel.) 80.385 ± 0.015 80.34 80.32 References: SM prediction: Phys.Rev.D69:053006,2004 Top Mass: 173.2±0.9 GeV (arXiv:1107.5255) Winter 2012 80 80.2 80.4 mW (GeV) R. Lopes de Sá (Stony Brook University) 80.6 80.3 W Mass at the Tevatron 165 170 175 180 185 Top quark mass (GeV) March 2012 18 (Preliminary) Global Electroweak Fit 6 mLimit = 152 GeV March 2012 Theory uncertainty ∆α(5) had = 5 0.02750±0.00033 0.02749±0.00010 incl. low Q2 data ∆χ2 4 3 2 1 0 LEP excluded 40 LHC excluded 100 200 mH [GeV] New (preliminary) indirect Higgs mass determination +34 MH = 94+29 −24 GeV (was MH = 92−26 GeV before) R. Lopes de Sá (Stony Brook University) W Mass at the Tevatron March 2012 19 Conclusions CDF and DØ measured the W mass with precision at least as good as the world average before. The CDF measurement is now the single most precise measurement of the W mass. CDF and DØ measurements in excellent agreement. Model and theory uncertainties begin to play an important role. CDF analyzed 2.2 f b−1 . DØ analyzed 4.3 f b−1 of integrated luminosity collected at high instantaneous luminosity runs of the Tevatron. The measurements at CDF and DØ can reduce the world average uncertainty down to 10 M eV when all the rest of the data is analyzed. The W mass will play an ever increasing role in the determination of the consistency of the Standard Model. R. Lopes de Sá (Stony Brook University) W Mass at the Tevatron March 2012 20 !"#"$%&'()*+$",*$","-.+(+$(#&'"#(),+ /(0$1#2",3$.)45$#)$ 6&7"#'),$#&"8$9)' )4#+#",*(,0$ %&'9)'8",:&; /(3*+(&"$,* !+(&(/,()*,4)15 5(,*1/4,'(+*67*8#9: %/*,'(*;1/ !"#$%&'()*+(&"$, -."/*0012 !"#$%&"'($)*'$&+,$-.$/*00"1*'"&2*# R. Lopes de Sá (Stony Brook University) 3,'420"1$52#,6/+,,7,$7,42#"'8$9"':+$;7&$<.;< W Mass at the Tevatron = March 2012 21 Backup Slides R. Lopes de Sá (Stony Brook University) W Mass at the Tevatron March 2012 22 CDF Systematic Uncertainties Source Uncertainty (MeV) Experimental – Statistical power of the calibration sample. Lepton Energy Scale 7 Lepton Energy Resolution 2 Recoil Energy Scale 4 Recoil Energy Resolution 4 Lepton Removal 2 Background 3 Experimental Total 10 W production and decay model – Not statistically driven. PDF 10 QED 4 Boson pT 5 W model Total 12 Total Systematic Uncertainty 15 W Statistics 12 Total Uncertainty 19 R. Lopes de Sá (Stony Brook University) W Mass at the Tevatron March 2012 23 DØ Systematic Uncertainties / T MeV mT MeV peT MeV E Experimental – Z statistics driven! Electron Energy Scale 16 17 16 Electron Energy Resolution 2 2 3 Electron Energy Nonlinearity 4 6 7 W and Z Electron energy 4 4 4 loss differences Recoil Model 5 6 14 Electron Efficiencies 1 3 5 Backgrounds 2 2 2 Experimental Total 18 20 24 W production and decay model – Not dependent on Z statistics! PDF 11 11 14 QED 7 7 9 Boson pT 2 5 2 W model Total 13 14 17 Total Systematic Uncertainty 22 24 29 W Statistics 13 14 15 Total Uncertainty 26 28 33 Source R. Lopes de Sá (Stony Brook University) W Mass at the Tevatron March 2012 24 Soft recoil: Data min-bias (CDF) or min-bias + zero-bias (DØ) events. Width (GeV) Lepton removal: Hadronic energy reconstructed as lepton. η imb Hard recoil: Parametrized from Z → `` events. 6 5.5 χ D0 Run II, 4.3 fb-1 η 3 D0 Run II, 4.3 fb-1 2 Data PMCS 1 0 -1 -2 5 10 15 -3 0 20 25 pee (GeV) T D0 Run II, 4.3 fb-1 5 4 10 15 20 25 pee (GeV) T 15 20 25 pee (GeV) T D0 Run II, 4.3 fb-1 3 Data 2 PMCS 5 1 imb Out-of-cone FSR: Photons reconstructed as recoil. 10 9 8 7 6 5 4 3 2 1 0 0 χ Mean (GeV) Recoil Model 4.5 0 -1 4 -2 CDF and DØ: Final tune with Z → `` 5 momentum imbalance. 3.5 3 0 -3 5 10 15 -4 0 20 25 pee (GeV) T 5 10 4 pee T ∫ L dt ≈ 2.2 fb -1 CDF II preliminary η̂ · η̂ e+ 3 2 χ2 / DoF = 15.6 / 9 1 ∫ L dt ≈ 2.2 fb -1 CDF II preliminary σ ( 0.65pηZ + uη ) (GeV) ŷ 0.65pηZ + uη (GeV) pee T 6 χ2 / DoF = 15.9 / 9 5.5 5 0 e − 4.5 -1 x̂ 4 -2 ξˆ uT · η̂ uT -3 0 5 10 epresentation of η̂ axisde andSá observables to fit the recoil model smearing parameters R. Lopes (Stonyused Brook University) 15 20 25 30 p (Z→ee) (GeV) T W Mass at the Tevatron 3.5 0 5 10 15 20 25 30 p (Z→ee) (GeV) T March 2012 25 DØ Consistency Check Instantaneous Luminosity L<2 2<L<4 mT pT MET 4<L<6 L>6 81.6 81.7 81.8 81.9 82 82.1 Blinded W mass (GeV) R. Lopes de Sá (Stony Brook University) 91 91.05 91.1 91.15 91.2 91.25 91.3 91.35 91.4 Z mass (GeV) W Mass at the Tevatron 0.895 0.896 0.897 0.898 0.899 0.9 0.901 (Blinded W mass) / (Z mass) March 2012 26 DØ Consistency Check – Time Early Run IIb1 Late Run IIb1 mT pT MET Early Run IIb2 Late Run IIb2 81.6 81.7 81.8 81.9 82 82.1 Blinded W mass (GeV) R. Lopes de Sá (Stony Brook University) 91 91.05 91.1 91.15 91.2 91.25 91.3 91.35 91.4 Z mass (GeV) W Mass at the Tevatron 0.895 0.896 0.897 0.898 0.899 0.9 0.901 (Blinded W mass) / (Z mass) March 2012 27 DØ Consistency Check – uk u|| < 0 GeV mT pT MET u|| > 0 GeV 81.6 R. Lopes de Sá (Stony Brook University) 81.7 81.8 81.9 82 82.1 Blinded W mass (GeV) W Mass at the Tevatron March 2012 28 DØ Consistency Check – Recoil uT uT < 10 GeV mT p T MET uT < 20 GeV 81.6 81.7 81.8 81.9 82 82.1 Blinded W mass (GeV) R. Lopes de Sá (Stony Brook University) 91 91.05 91.1 91.15 91.2 91.25 91.3 91.35 91.4 Z mass (GeV) W Mass at the Tevatron 0.895 0.896 0.897 0.898 0.899 0.9 0.901 (Blinded W mass) / (Z mass) March 2012 29
© Copyright 2026 Paperzz