Mathematics Department Clyde Valley High School 1. Solve the quadratic equation 2x2 – 6x + 1 = 0, giving your answers correct to 2 decimal places. 2. y 0 A D B x C The diagram shows the graph of the quadratic y = x2 – 6x – 7. The graph cuts the x axis at points A and B and the y axis at point D. The quadratic has a minimum turning point at C. Determine the coordinates of points A, B, C and D. 3. Simplify the following 2 4 a) (3x ) 3 b) 5x × 8x 4 12 y 7 c) 5y4 d) ( x 3 y 2 ) 5 4. Solve the equation 8cosx – 7 = 0, 0 ≤ x ≤ 360°. 5. y varies directly as the cube of x. If x is doubled, find the effect on y. 6. Factorize and solve a) 3x2 + 7x = 0 b) 3x2 – 4x + 1 = 0 Mathematics Department Clyde Valley High School 7. y varies inversely as the square of x. Copy and complete the table. x 3 3.5 4 4.5 y 4 8. Show that there is a root of the equation y = 12 + x – x3 between x = 2 and x = 3. Find this root correct to 1 decimal place. 9. If f(x) = 8x evaluate a) f(0) 2 3 b) f( ) c) f(-2) 10. The diagram shows a right angled triangle with sides x, x+5 and x+7. Make an equation and solve it to find x correct to 1 decimal place. x+7 x x+5 11. Cereal A manufacturer claims that its breakfast cereal contains at least 22% fruit. A 750 gm packet of the cereal was checked and found to contain 172 gm of fruit. What actual percentage of the cereal is fruit? Mathematics Department Clyde Valley High School 12. Find the largest angle in the triangle shown. Hence find the area of the triangle. 5.8cm 4.6cm 5.2cm 13. d = 8cm 9cm 13cm 28cm The diagram shows three cylinders each of diameter 8cm and height 9 cm, cut out of a cuboid. Calculate the volume of the shape which remains. Mathematics Department Clyde Valley High School D 14. 4cm A 3cm C B The diagram shows a circle centre C and radius 3cm. AD is a chord in the circle 4cm long. a) Find the sizes of all the sides and angles of triangle ABD. b) Calculate the area of triangle ADB. 15. The braking force F kilonewtons , required to stop a train varies directly as the square of the speed, V km/hr and inversely as its stopping distance S kilometers. a) A train travelling at 160km/hr has a braking force of 140 kilonewtons applied to it. If it takes 1.2km to stop, find a formula for F in terms of V and S. b) Further down the track, the train driver sees a cow grazing on the track. The cow is 0.6km away from the train when the train is travelling at a speed of 100km/hr. If the driver applies the brakes with a force of 210 kilonewtons will the train stop before reaching the cow? Mathematics Department Clyde Valley High School 16. The bearings and distances of two ships A and B from Dundee are given by A[035°,98km] and B[162°, 78km]. Make a diagram and show clearly the positions of the two ships. Calculate the distance between the ships. ( do not use a scale drawing ). 17. A h ground The diagram shows 3 identical circles of radius 5cm. Calculate the height of point A above the ground.
© Copyright 2026 Paperzz