MATH 2414 - Exam 3 Review Find the limit of the sequence or determine that the limit does not exist. -9 n 1) a n = 1 + n 2) a n = n 6n · n 3) a n = n - n 2 - 12n Find the limit of the sequence or state that it diverges. sin3 n 4) 3n Find the sum of the series. (-1)n-1 5) n=1 6) 5 6n 1 1 n 7n n=0 3 Determine if the series converges or diverges. If the series converges, find its sum. 1 n+1 7) n=1 1 n+2 (tan-1 (n + 1) - tan-1 n) 8) n=1 Use the integral test to determine whether the series converges. 9) 6n 2 n=1 n + 4 Use the ratio test to determine if the series converges or diverges. 10) n=1 11) n=1 8n n! 10(n!)2 (2n)! 1 Use the root test to determine if the series converges or diverges. n 10n 1/n - 1 12) 1/n - 1 n=1 3n Use the Comparison Test to determine if the series converges or diverges. 1 n-1 +1 2 13) n=1 Use the limit comparison test to determine if the series converges or diverges. 14) 9 n 3/2 - 7n + 7 n=1 3n Determine convergence or divergence of the series. n 4 e-n 15) n=1 Determine convergence or divergence of the alternating series. (-1)n n 7/4 16) n=1 Determine if the series converges absolutely, converges, or diverges. 17) (-1)n 1/3 + 8 n=1 3n 18) (-1)n n=1 4n 2 + 1 4n 7 + 2 (-1)n ln 19) n=1 9n + 7 8n + 6 Estimate the magnitude of the error involved in using the sum of the first four terms to approximate the sum of the entire series. 20) n=1 (-1)n+1 (-0.2)2n+1 2n + 1 Find the series' radius of convergence. 21) n=0 (x - 4)n 7n + 5 2 22) n=1 (x - 7)n (2n)! Find the interval of convergence of the series. 23) n=0 24) n=0 (x - 9)n 5n + 4 (x - 9)2n 36n Find the function represented by the power series. 25) n=1 26) n=0 x-1 n 2 x2 - 7 2 n Find the Taylor series generated by f at x = a. 1 27) f(x) = , a = 3 x Use power series operations to find the Taylor series at x = 0 for the given function. 28) f(x) = x5 sin x 29) f(x) = x10 tan-1 (5x) Find the first four terms of the binomial series for the given function. 30) (1 + 9x)-1/2 3 Answer Key Testname: EXAM 3 REVIEW e-9 6 6 0 5 5) 7 1) 2) 3) 4) 6) 1 3 7) converges; 8) converges; 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19) 20) 21) 22) 23) 24) 1 2 2 diverges Converges Converges Diverges converges Diverges Converges Converges Converges conditionally Converges absolutely Diverges -1.86 × 10-9 1 , for all x 8 x < 10 3 < x < 15 x-1 25) x-3 26) - 2 2 x -9 27) n=0 28) n=0 29) (-1)n (x - 3)n 3 n+1 (-1)n x2n+6 (2n + 1)! (-1)n 5 2n+1 x2n+11 2n + 1 n=0 9 243 2 3645 3 x x 30) 1 - x + 2 8 16 4
© Copyright 2025 Paperzz