Section 3.5 Homework Exercises 1. d dx (−10x + 3 cos x) = −10 − 3 sin x 3. d dx x2 cos x = x2 7. d dx (sin d dx cos x + x tan x) = sin x d dx d dx x2 = −x2 sin x + 2x cos x tanx + tan x d dx sin x = sin x sec2 x + tan x cos x 13. A problem like this will be a candidate for other rules later on once we have them, but for now we employ the quotient rule. d dx 4 1 + cos x tan x 19. For s = tan t − t, we have ds dt d dx d d 4 − 4 dx cos x tan x dx 1 − tan x + 2 cos x tan2 x (cos x)(0) − 4(−sin x) (tan x)(0) − 4 sec2 x = + cos2 x tan2 x 4 sin x 4 sec2 x − = cos2 x tan2 x sin x 1 1 cos2 x =4· · −4· · cos x cos x cos2 x sin2 x = 4 tan x sec x − 4 csc2 x = cos x = sec2 t − 1. 23. If r = 4 − θ2 sin θ, then dr d d = −θ2 sin θ + sin θ (−θ2 ) dθ dθ dθ = −θ2 cos θ − 2θ sin θ 29. For the derivative of p = sin q+cos q , cos q we need to use the quotient rule. d d (sin q + cos q) − (sin q + cos q) dq cos q cos q dq dp = 2 dq cos q cos q(cos q − sin q) − (sin q + cos q)(−sin q) = cos2 q cos2 q − sin q cos q + sin2 q + sin q cos q = cos2 q cos2 q + sin2 q = cos2 q 1 = cos2 q = sec2 q 35. For y = sin x, dy dx = cos x. y =0 x=−π dy = −1 dx x=−π 0 = −(−π) + b y =0 x=0 dy =1 dx x=0 0 = 1(0) + b b = −π b=0 y dy =0 dx x=−π 3π +b −1 = 0 2 b = −1 y=x y = −x − π = −1 x= 3π 2 y = −1 y=x y = −x − π y = −1 39. To find if there are any horizontal tangents to the curve, we find y 0 and set equal to 0. y = x + sin x 0 y = 1 + cos x = 0 cos x = −1 x=π 47. lim sin x→2 1 x − 1 2 = sin 59. We want to find 1 2 − d999 cos dx999 1 2 = sin 0 = 0 x. d cos x = −sin x dx d2 d cos x = (−sin x) = −cos x dx2 dx d3 d − cos x = sin x cos x = dx3 dx d4 d sin x = cos x cos x = dx4 dx Notice that it takes 4 derivatives to return back to cos x. When we find 999 4 , we 249 with a remainder of 3. This tells us that we would go through this cycle 249 times and then would be back at cos x needing to take 3 more derivatives. So, d999 d3 cos x = cos x = sin x dx999 dx3
© Copyright 2026 Paperzz