1965-34 9th Workshop on Three-Dimensional Modelling of Seismic Waves Generation, Propagation and their Inversion 22 September - 4 October, 2008 Relative location, relative moment tensor inversion. Torsten Dahm Institut für Geophysik Universität Hamburg Germany —————————— —————————— [email protected] [email protected] Relative location, relative moment tensor inversion ICTP Course 2008 Trieste Torsten Dahm [email protected] Institut für Geophysik, Universität Hamburg contributions from: Th. Fischer, J. Reinhardt Dahm, ICTP 2006 II – p.1/33 Earthquake swarms & cluster .0 45 .9 ) 39 km 44 no 7 rth e 0. a st 2 ( . ( 4 k m 4.4 ) 4 .5 40 .1 45 .0 44 no 4 rth 40 . .2 44 (k m ea s -9.0 -9.3 .9 .7 39 height (km) t (k40.2 . 44 -8.7 40 no 4 rth 44 ) m (k -9.0 .0 44 .1 45 40 ) (k 40 .2 . (km 44 st no 7 rth ea m 44 .4 .5 -9.3 39 ) .9 45 .0 height (km) .1 44 44 .5 -8.7 40 .1 ) .5 st m) ea (k m 44 .9 ) .7 39 45 . 0 ) 44( . 7 km 4 no rt h 44 . 44 . 1 39.9 40.5 east40.2 (km) 45.0 40.2 (km) 40.5 east 39.9 44.7 north 44.4 (km) 44.1 700 clustered events from the 1997 Bohemian massive earthquake swarm (see Dahm, Sileny and Horalek, 2000). Dahm, ICTP 2006 II – p.2/33 A. Precise earthquake location The simultaneous location of clustered earthquakes and multiplets increases the location accuracy and reduces model-dependent bias. Dahm, ICTP 2006 II – p.3/33 Single source location (Geigers method) = (X, Y, Z): Equation for one observation at X velocity) t = tobs = h + T (x, X, (summ. conv.) linearizing around starting model m0 tobs − ttheo (m0) ≈ ∂t ∂t (m0k − mk ) = Δmk ∂mk ∂mk t h T x = (x, y, z) m = (h, X − x, Y − y, Z − z) with : : : : : arrival time origin time travel time location vector model vector Dahm, ICTP 2006 II – p.4/33 master event location station Δ t = Δ t0 + Δ x / c 1 2 sources far-field equation (i=slave event, j =master event): n obs obs ti − tj = (hi − hj ) + (xi − xj ) c with n : unit vector of ray to X c : velocity at source Dahm, ICTP 2006 II – p.5/33 master event location relative locations with high accuracy, but absolute location is not improved location of master event is not changed high precision time-difference measurements when waveforms are similar a minor influence of the unmodelled unknown structure far away from the cluster systematic time errors at a station have no effect on the results Dahm, ICTP 2006 II – p.6/33 Double difference method Dahm, ICTP 2006 II – p.7/33 Double difference method (linearized) The parallel ray assumption is relaxed. For each : observation at X obs ) − (ttheo − ttheo ) = (tobs − t (i) (j) (i) (j) = (j) ∂t(i) ∂t (i) (j) Δmk − Δmk ∂mk ∂mk advantage : bended rays, mixed input data disadvantage : nonlinear, iterative scheme accurate theoretical traveltime differences (see Waldhauser and Ellsworth, BSSA, 2000) Dahm, ICTP 2006 II – p.8/33 Double difference method Relocation of 28 events from the Berkeley cluster (Waldhauser and Ellsworth, BSSA, 2000) Dahm, ICTP 2006 II – p.9/33 Application to 1997 Vogtland swarm 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 WEBNET waveform data available (Horálek, pers. comm.) Precise estimate of time shift for best coherence Arrival time differences with high accuracy Easy amplitude picking Dahm, ICTP 2006 II – p.10/33 A. accurate time difference measurment 0.0 0.5 1.0 1.5 2.0 very accurate arrival time dif0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 ference measurements when waveforms are similar (correlation approach) Dahm, ICTP 2006 II – p.11/33 B. multiplet analysis Coherence analysis (Maurer and Deichmann, 1995) with events of the 1997 earthquake swarm beneath Novy Kostel 600 400 37 % of the events (274) grouped in 14 multiplets 200 0 0 200 400 600 relative time differences extracted correlation calculated coefficients Dahm, ICTP 2006 II – p.12/33 C. high precision relocation 002 016 115 031 481 327 225 319 287 352 431 494 517 697 500 0 20 -500 -500 0 500 15 y [m] (W->E) 1 2 3 4 5 6 7 8 9 multiplet No. 10 11 12 13 14 time [days] x [m] (S->N) 25 1 2 3 4 5 6 7 8 9 10 11 12 13 14 multiplet no. Dahm, ICTP 2006 II – p.13/33 D. Precise source mechanisms For clustered earthquakes and for multiplets a relative amplitude inversion (relative moment tensor) is possible and allows to analyse weak events. Having accurate locations and source mechanism is useful for the identification of micro-faults and stress inversion Dahm, ICTP 2006 II – p.14/33 relative moment tensor inverson (i) (i) h m u = k k I station source (1) mk I Green function (2) mk (k=1,6) Body waves amplitudes depend on a single scalar Green function, that can be eliminated when one master event mechanism is known Dahm, ICTP 2006 II – p.15/33 relative moment tensor inversion moment tensors relative to the tensor of a master event, but absolute tensors (moments) are not improved moment tensor of the master event is not improved relative amplitudes are measured with high precision when waveforms are similar unmodelled unknown structure far away from the cluster has a minor influence on the results systematic station effects have no impact on the results Dahm, ICTP 2006 II – p.16/33 assumptions the mechanism of the reference event is well known a priori events are narrow clustered and seismograms are lowpass filtered (temporal and spatial point source, all events occur within approx. one wavelength from the master event) used frequency range below the corner frequency of the largest studied event of the cluster isolated, non-interfering body-waves are used Dahm, ICTP 2006 II – p.17/33 Estimation of Moment Tensors 1 2 3 4 5 6 7 8 multiplet no. 9 10 11 12 13 14 Relative moment tensor inversion (Dahm, 1996) automated picking of P- and S-phase amplitudes 522 moment tensors inverted Classification with multiplets possible Dahm, ICTP 2006 II – p.18/33 Plane with en echelon faults z [m] -500 0 x’ [m] (45° N) 500 -500 8500 500 8500 9000 9000 9500 9500 287 352 697 431 517 0 z [m] y’ [m] (135° N) 287 352 697 431 517 1 2 3 4 5 6 7 8 9 1011 12 1314 multiplet no. Dahm, ICTP 2006 II – p.19/33 body-wave approach for each ray (P, SV, SH): ũ = hk mk I , with hP1 = − cos(2ϕ)sin2 α , hP2 = sin(2ϕ)sin2 α , hP3 = cos ϕsin2α , hP4 = sin ϕsin2α , hP5 = 2 − 3sin2 α , hP6 = 1 , and similar for SH-waves. hSV 1 hSV 2 hSV 3 hSV 4 hSV 5 hSV 6 = −0.5 cos(2ϕ)sin2α , = 0.5 sin(2ϕ)sin2α , = cos ϕcos2α , = sin ϕcos2α , = −1.5sin2α , = 0, (e.g. Aki & Richards, 1982) Dahm, ICTP 2006 II – p.20/33 used convention take-off angle: α azimuth angle: ϕ moment tensor: m1 = m2 = m3 = m4 = m5 = m6 = 1 (M22 − M11 ) 2 M12 M13 M23 1 (0.5(M22 − M11 ) − M33 ) 3 1 (M11 + M22 + M33 ) 3 Dahm, ICTP 2006 II – p.21/33 what is different? the ”Green function I ” is a scalar for each body-wave mode =⇒ it can be eliminated when using two earthquakes from the same source region (1) ũ = I = (1) (1) hk mk I ũ(2) (2) (2) hk mk leading to (2) ũ (1) (1) hl ml (1) = ũ (2) (2) hk mk T [data] = [vector ] [unknown model] Dahm, ICTP 2006 II – p.22/33 additional polarity constraints (1) (1) ũ(2) hl ml (2) (2) = ũ(1) hk mk ũ(2) (2) (2) 0 ≤ hk mk (2) |ũ | [data] = [vector ]T [unknown model ] 0 ≤ polarity · [ geometry ]T [unknown model ] Dahm, ICTP 2006 II – p.23/33 relative method without master From (1) (1) hl ml (2) ũ (1) = ũ (2) (2) hk mk we formally write 0 2 4 0 const = 3 5 (1) −ũ(2) hl 2 = 4 (1) −ũ(2) h1 1 (1) ml (2) (2) + ũ(1) hk mk ... ... (2) −ũ(2) h6 1 2 (2) ũ(1) h1 1 ... ... (2) ũ(1) h6 1 6 6 6 6 6 6 36 6 6 56 6 6 6 6 6 6 6 6 4 (1) m1 (1) m2 . . . (1) m6 (2) m1 (2) m2 . . . (2) 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 5 m6 Dahm, ICTP 2006 II – p.24/33 Hindu Kush deep cluster Hindu Kush (a) (b) 70˚ 30' 71˚ 00' 20 km 36.75 36˚ 45' 36˚ 30' 8 11 1 6 10 10 8 9 2 6 7 3 36˚ 15' 5 36.50 9 1 7 2 11 3 5 4 36.25 4 175 200 225 z[km] 250 Dahm, ICTP 2006 II – p.25/33 TAM INU SSB ECH YAK ATD BJT OBN ARU KIV KURK BRVK AAK WUS ABKT NIL record section for event No 1 t - x/8 (s) 400 300 sS 200 S PcP 100 0 P -100 PP pP sP -200 -300 1000 2000 3000 4000 5000 6000 7000 x (km) Dahm, ICTP 2006 II – p.26/33 data processing 11 events with max. distance of 35 km. band-pass filter between 0.05 Hz and 0.1 Hz; wavelength between ≈ 80 km (P) and ≈ 46 km (S) P-, S-, pP-, sP-, PP-phases selected where no interference peak amplitudes measured Dahm, ICTP 2006 II – p.27/33 measuring amplitudes Dahm, ICTP 2006 II – p.28/33 inversion results Dahm, ICTP 2006 II – p.29/33 programs and directories directory example 1. relref.exe: relative inversion with reference mechanism 2. relrpos.exe: relative inversion without reference mechanism 3. syndat4relef.f: generate synthetic input to test geometry 4. pltbeachball.cmd: plot solutions in comparison to Harvad CMT Dahm, ICTP 2006 II – p.30/33 relref.f Input: relref.inp Output: 1. relref.out: full listing of result 2. result.par: short version of result for plotting 3. relray.pola: polarities used 4. . . . Dahm, ICTP 2006 II – p.31/33 description of input file HK, 11ev, 28.07.99, Pol iev ibit inorm idyn iclust imat idev ipol 11 56 +1 0 0 0 6 0 fact(i),i=1,iev (16f5.1) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 .00E+00 1.0 1.0 1.0 1.0 1.0 .0000 wt cmp azi toff / u(i,j), i=1,iev 1.00 1 23.062 102.630 AAK P 0.000 0.000 0 -7.9522000000000e+03 25.644 98.997 0.0000 1.000e+00 -1 0 -1.9283100000000e+05 23.072 99.817 0.0000 1.000e+00 -1 1 0.0000000000000e+00 21.440 100.23 4 0.0000 1.000e+00 0 0 -7.2773000000000e+04 23.992 106.039 0.0000 1.000e+00 -1 ...... Reference Mechanisms 1 0 -0.76 0.07 ..... ..... 0.00 -0.63 0.12 0.76 0.4 Dahm, ICTP 2006 II – p.32/33 practical 1. reproduce results using relref.exe and relrpos.exe 2. introduce deviatoric source constraint 3. introduce polarity constraint 4. use only event 1 as reference event (relref.exe) 5. change moment tensor of reference event Dahm, ICTP 2006 II – p.33/33
© Copyright 2026 Paperzz