TRANSITION RADIATION AND IONIZATION ENERGY LOSSES OF HIGH-ENERGY ‘HALF-BARE’ ELECTRON S.V. Trofymenko Akhiezer Institute for Theoretical Physics of NSC ‘Kharkov Institute of Physics and Technology’ Kharkov, Ukraine N F Shul’ga, N.F. Sh l’ S.V. S V Trofymenko, T f k V.V. V V Syshchenko S h h k // JETP Lett. L (2011) N.F. Shul’ga, S.V. Trofymenko // Chapter in the Book “Solutions and Applications off Scattering, S tt i Propagation, P ti Radiation R di ti andd Emission E i i off Electromagnetic El t ti Waves”, W ” InTech (2012) N F Shul N.F. Shul’ga ga, SS.V. V Trofymenko // Phys. Phys Lett. Lett A (2012) 1 COHERENCE LENGTH. ‘HALF-BARE’ PARTICLE Ultra relativistic case ( γ >> 1 ): incident particle ‘half-bare’ interaction bremsstrahlung atoms lC ≈ 2γ 2 / ω the frequency q y ω appears pp on distance lC ≈ 2γ 2 / ω from the interaction area ε For electron energy ≈ 100 GeV boundary between two substances γ – Lorentz-factor q y ω – radiated frequency p of Fourier-components part p is absent in the field around the particle – the particle is ‘half-bare’ EL F E.L. Feinberg// i b // Sov. S Phys. Ph JETP, JETP 1966 lC ≈ 2γ 2 / ω lC ≈ 10 meters transition radiation MANIFESTATION OF ‘HALF-BARE’ STATE OF ELECTRON IN ITS BREMSSTRAHLUNG 1) Coherent bremsstrahlung d / dω dI BH 2) Landau-PomeranchukMigdal effect (suppression of Bethe-Heitler spectrum al low f frequencies) i ) LPM ω 3) Ternovsky-Shul’ga-Fomin Ternovsky Shul’ga Fomin effect (modification of LPMeffect in thin layers y of substance)) Observed in CERN NA63 experiment: H.D. Thomsen, K.K. Andersen, J. Esberg, H. Knudsen, M. Lund, K.R. Hansen, U I Uggerhøj U.I. Uggerhøj, et. et al., al (2009). (2009) U. Uggerhøj : ‘… we have seen the ‘half -bare’ electron !’ 3 AIM OF THE PRESENT PAPER Search for manifestation of ‘half-bare’ state of electron in its: 1) Transition radiation 2) Ionization energy losses ELECTRON ‘UNDRESSING’ BY INSTANT SCATTERING z' ‘half-bare’ electron ‘t ‘torn-away’ ’ field fi ld 0 z R = ct The total field for t > 0 : r r r ϕ ( r , t ) = θ ( r − t )ϕ vr ( r , t ) + θ (t − r )ϕ vr ' ( r , t ) A.I. Akhiezer, N.F. Shul’ga // High Energy Electrodynamics in Matter, 1996 N.F. Shul’ga, V.V. Syshchenko, S.N. Shul’ga // Phys. Lett. A, 2009 TRANSITION RADIATION BY ‘HALF-BARE’ HALF BARE ELECTRON z' metallic plate suppression of radiation for z '0 z '0 << 2γ 2 / ω period of oscillations Λ = 4π ω (ϑ 2 + γ −2 ) z R = ct the oscillations can be observed for ω / Δω z '0 < 2π Δω (ϑ 2 + γ −2 ) – detector resolution Transition radiation by ‘half-bare’ electron: dε e2 ϑ2 = 2 dω do π (ϑ 2 + γ −2 )2 ⎧ ⎫ ⎡ ω z ' 0 −2 2 ⎤ ( γ + ϑ )⎥ ⎬ 2 ⎨1 − cos ⎢ ⎣ 2 ⎦⎭ ⎩ FERMI AND BETHE-BLOCH FORMULAE I fi it medium Infinite di Bethe-Bloch formula ( γ ≤ I / ω p ): dε γ = 2 ln dz v bI ω p2 e 2 r v Fermi formula ( γ > I / ω p): dE / dz v dε = 2 ln dz v bω p ω p2 e2 Fermi (density effect) γ > I / ωp ln I / ω p ln γ γ – electron Lorentz-factor I – ωp– mean ionization potential plasma frequency 7 THIN LAYER OF SUBSTANCE Bethe-Bloch and Fermi formulae are valid in boundless homogeneous substance Garibian G.M.// JETP, 1959 Sørensen A. // Phys.Rev.A, 1987 Total absence of the density effect in thin plates: a ≤ I /ω 2 p Particle energy loss: Δ E= ω p2 e 2 v 2 a ln γ bI for 1≤γ < ∞ a 8 EVOLUTION OF THE FIELD AROUND THE ELECTRON IN VACUUM ρ substance vacuum z 9 EVOLUTION OF THE FIELD AROUND THE ELECTRON IN VACUUM ρ substance vacuum z Fourier component of the total field (γ >> 1 ,ω >> ω p ): ⎧ ⎡ ⎤ ω i z 2 ∞ q z ⎪ e 1 1 ⎥ iω z − 2ω ev ⎪ ⎢ ρ r 2 ⎥e Eω ( r ) = 2 ∫ dqq J1 ( qρ ) ⎨ ⎢ − + 2 2 2 ω ω ω v0 2 2 2 2 ⎥ ⎢ ⎪ q + ωp + q + 2 q + 2 2 ⎥ ⎢ γ γ ⎦ γ ⎪⎩ ⎣ J1 ( x) – Bessel function transition radiation Coulomb field ⎫ ⎪ ⎪ ⎬ ⎪ ⎪⎭ 10 EVOLUTION OF THE FIELD AROUND THE ELECTRON IN VACUUM ρ substance vacuum z For z → 0: ω 2 2 ⎛ ⎞ i z 2 ω ω e 2 ⎟ v 2 ⎜ρ Eωρ ( ρ ) = + ω K + ω e 1 p p 2 2 ⎜ ⎟ v γ γ ⎝ ⎠ suppressed frequencies ω ≤ γω p electron is ‘half-bare’ K1 ( x ) – modified Bessel function 11 EVOLUTION OF THE FIELD AROUND THE ELECTRON IN VACUUM ρ substance vacuum z For z > 2γ / ω : 2 2e ⎧⎪ ω ⎛ ω ⎞ i v z e E (ρ , z) = K ρ e + F (ρ / z) ⎜ ⎟ ⎨ 1⎜ ⎟ v ⎪⎩ γ ⎝ γ ⎠ r ρ ω ω iω r ⎫⎪ ⎬ ⎪⎭ F – definite function of ρ / z r = ρ 2 + z2 12 EVOLUTION OF THE FIELD AROUND THE ELECTRON IN VACUUM ρ substance vacuum z z1 For z > 2γ / ω : 2 2e ⎧⎪ ω ⎛ ω ⎞ i v z e E (ρ , z) = K ρ e + F (ρ / z) ⎜ ⎟ ⎨ 1⎜ ⎟ v ⎪⎩ γ ⎝ γ ⎠ r ρ ω ω iω r ⎫⎪ ⎬ ⎪⎭ F – definite function of ρ / z r = ρ 2 + z2 13 IONIZATION ENERGY LOSSES OF ‘HALF-BARE’ HALF-BARE ELECTRON Total ionization per unit path ( q0 >> ω p >> I / γ ): dε = dz η p2 e 2 ⎧⎪ q0 vγ v 2 ⎨ln I ⎪⎩ + ln ω p vγ I + + Ci (λγ ) − cos λ pCi (λ p + λγ ) − sin λ p Si (λ p + λγ ) + ⎫⎪ + λγ Si (λγ ) + cos λγ ⎬ ⎪⎭ where: λ p = z1ω p2 / 2 I λγ = Iz1 / 2v 2γ 2 η p – plasma frequency of the plate I – mean ionization potential v 2 dε η p2 e 2 dz IONIZATION ENERGY LOSSES OF ‘HALF HALF-BARE BARE’ ELECTRON (from Fermi to Bethe-Bloch formula) Bethe-Bloch + radiation Bethe-Bloch Fermi ω vγ q0vγ + ln p I I q vγ ln 0 I ln ln q0 ωp γ2/I 0 z1 For ε = 100 GeV z Possibility P ibili off ‘half-bare’ ‘h lf b ’ electron l experimental observation γ2 I ≈ 10 meters ! 15 CERN NA63 EXPERIMENT (2010) a >> I / ω p2 K.K. Andersen, J. Esberg, K.R. Hansen, H. Knudsen, M. Lund, H.D. Thomsen, U.I. Uggerhøj, et. al., NIM B (2010). CONCLUSIONS ‘Half-bare’ state of electron should be manifested in its transition radiation and ionization losses as well as in bremsstrahlung: Dependence of electron transition radiation characteristics on distance between the plate and the scattering point Existence of transition pprocess in which ionization losses of the particle are defined by the mechanism of restoration of the field around it (not by absorption) Gradual increase of electron ionization losses in thin plate from the value with density effect (Fermi formula) to the value without it (Bethe-Bloch formula) supplemented by contribution to ionization from transition radiation 17 IONIZATION OF SUBSTANCE BY EXTERNAL FIELD ω0 = I &x& + βx& + ω02 x = ( e C Eρ + EρF m Δ Energy transfer to a harmonic oscillator by external field: 2 2 ε r e = Eω0 ( r ) 2m ) x (t ) ρ z JJ.D. D JJackson k // Classical Cl i l electrodynamics, 1999 ω0 – oscillator’s own frequency Total ionization per unit path: dε e2 ρ r 2 =n dρ 2πρ Eω0 ( r ) ∫ dz 2m 0 ∞ 18 REBUILDING OF THE FIELD AND IONIZATION LOSSES rebuilding of the field L ≈ γ / I 2 z change of ionization losses L ≈ I / ω p2 ≈ absorption length I – mean ionization potential 19 IONIZATION ENERGY LOSSES OF ‘HALF-BARE’ HALF-BARE ELECTRON Assumption: q0 >> ω p >> I / γ Ω For dε q0 pe = 2 ln dz v ωp 2 z→0 2 Ω For I / ω << z << 2γ / I 2 2 q0 zω p dε pe = 2 lln dz v 2I For z ≥ 2γ / I 2 2 ω p vγ ⎫ dε q0vγ pe ⎧ = 2 ⎨ln + ln ⎬ I I ⎭ dz v ⎩ 2 p 2 Ω 2 F (ϑ ) = ω 2p ϑ ω 2 (ϑ 2 + ω 2p / ω 2 + 1 / v 2γ 2 )(ϑ 2 + 1 / v 2γ 2 ) 20 EVOLUTION OF THE FIELD AROUND THE ELECTRON IN VACUUM AT ULTRA HIGH ENERGIES Total field: r rC r F E=E +E Boundary conditions: (E (E ρ + EρF ) C z + EzF ) C diel = (EρC + EρF ) vac z =0 diel z =0 z =0 vac ) = ε (E zC + EzF ) rF + divE = 0 z =0 Fourier expansion of the free field: r e Eρ (r , t ) = ∞ 2 dqq ∫ J 1 (qρ ) × π v0 ⎡ v v 2 2 2 2 q q 1 + ω ε − ε + ω ε − ⎢ ω −q ω ω × ∫ dω − ⎢ 2 2 2 2 2 2 ω ω 2 2 2 2 ω ε ε ω − q + − q ⎢ q + −∞ − q εω + − ω ⎢⎣ v2 v2 r r q – component of vector k orthogonal to z axis +∞ 2 2 ⎤ ⎥ i ⎥e ⎥ ⎥⎦ ω 2 − q 2 z −iω t 21 EVOLUTION OF THE FIELD AROUND THE ELECTRON IN VACUUM AT ULTRA HIGH ENERGIES Own Coulomb field of the particle: r ∂ EρC ( r , t ) = − ∂ρ e ργ 2 −2 + ( z − vt ) 2 = e π ∞ +∞ dω ∫ dq ∫ v −∞ 0 q 2 J 1 ( qρ ) q2 + ω v 2γ 2 2 ω e i z v Total field: Eρ = EρC + EρF NIM B, Volume 268, Issue 9, 1 May 2010, Pages 1412 1412–1415 1415 22
© Copyright 2026 Paperzz