Chapter 14 Algebra Exercise 14.1 1. Determine the values of the letters in these formulae :a A = m + n when m = 19 and n = 18 b B = 2k + 4p when k = 5 and p = 6 c C = 50 – 3a when a = 14 d D= e E= f F = pq – r when p = 7 q = 4 and r = 6 g G = w 2 when w = 20 h H = x when x = 144 i I = 5y 2 − 3 when y = 4 j J = (a − b )2 when a = 3 and b = 2 l ⎛ x ⎞2 L = ⎜⎜ ⎟⎟ when x = 14 and y = 2. ⎝y ⎠ k 2. K= 65 c + 1 v w when c = 9 when v = 72 and w = 2 36 g when g = 9 The cost of hiring a wheelbarrow is a one-off payment of £12 plus £5·50 per day. The cost £C for n days is given by the formula C = 12 + 5·5n . Find the cost of hiring a wheelbarrow for 6 days. Exercise 14.2 1. 2. Multiply out the brackets :a 4(x + 5) b 3(x – 9) c 8(1 – x) d 2(x + y) e 15(x – y) f 20(y – x) g 3(2x + 1) h 7(3x + 4) i 5(2x – 1) j 9(1 – 2x) k 10(3 – 4x) l 3(2x + 3y) m 8(3y – x) n 7(5p + 4q) o 6(6k – 3mp) p 20(5ab + 2c) q –2(a + 5) r –3(a + 7) s –4(6a + 1) t –8(2 – 3a) u –2(v – 1) v –5(v – 3) w –7(v – 2w) x –6(10v – w). Rewrite the following without brackets :a 2(a + 2b + c) b 3(a + 4b + 5c) c 4(a – b + 6c) d 5(3a – 2b + c) e 10(5a – 4b – 3c) f 20(a – b – 1) g 6(ab + bc – cd) h 9(abc + d – 4) i –2(a + b + c) j –3(2a + 5b + 7c) k –4(3a – 2b + 5c) l –5(4a – 3b – 6c). ©TeeJay Publishers 2007 page 57 Algebra Exercise 14.3 Multiply out the brackets and collect like terms :1. 2. a 2(x + 3) + 1 b 3(p + 4) + 2 c 2(d + 5) – 9 d 8(n + 1) – 2 e 5(x + 1) + 3x f 9(x + 3) + x g 7(t + 1) – 2t h 10(p + 4) – 6p i 7x + 7(x + 1) j 9w + 5(w – 1) k 4k + 2(5k + 1) l 6k + 2(2k – 5) m 4x + 2(4x – 3y) n 4(4p – 2q) – 10p o 9 – 2(p – 4) a 2(x + 4) + 4(x + 1) b 3(a + 4) + 6(a + 2) c 4(m – 2) + 5(m + 3) d 3(p – 2) + 8(p + 1) e 4(2 + 3x) + 9(1 – x) f 7(1 – x) + 10(1 + x) g 12(2m + 2) + 2(2m – 8) h 9(3 – 2g) + 4(1 + 5g) i 2(5d – 3) + 3(2d + 4) j 2(5v + w) + 2(3w – 2v) k 4 + 2(x – 5) l 4 – 2(x – 5) (careful) (careful) Exercise 14.4 1. 2. 3. Factorise each of the following by taking out a common factor :a 3x + 12 b 6x + 24 c 8x + 40 d 2x – 10 e 3x – 15 f 6x – 30 g 9x + 72 h 8x – 56 i 5x + 45 j 7x + 14y k 4a + 12b l 5p + 20q m 2v – 18w n 10m – 90n o 110k + 11h. Factorise each of the following by taking out the highest common factor each time :a 4x + 10 b 8x + 20 c 9x + 15 d 4x – 14 e 10x – 25 f 15x – 35 g 27x + 18 h 20x + 24 i 21x + 35 j 6p + 9q k 20p + 30q l 12x + 18 m 6a – 14b n 35a – 15b o 14a – 35b. Factorise each of the following by taking out a common factor or letter :a 5a + 5b + 5c b 2a + 4b + 12c c 25a + 15b – 45c d 14a – 21b – 56c e pr – pq – pm f ab – av – a. ©TeeJay Publishers 2007 page 58 Algebra Exercise 14.5 Solve these equations :1. x + 4 = 11 2. 2x = 16 3. 2x + 7 = 17 4. x – 3 = 11 5. 2x = x + 7 6. 6x = 2x + 20 7. x – 11 = 12 8. 3x – 1 = 26 9. 2(x + 1) = 10 10. 4 x – 3 = 3x + 7 11. 7x = 56 12. 8x = 5x + 21 13. 7 x + 2 = 5x + 9 14. 3(x – 4) = 15 15. 6x + 2 = 50 16. 4x = 40 17. 5(x – 1) = 40 18. x – 0·5 = 7·5 19. 18x = 15x + 21 20. 3x – 8 = x + 1 21. x + 1·5 = 7·5 22. 11x = 2x + 72 23. 21x = 4x + 17 24. 5x – 6 = 44 25. 4x = 10 26. 11x – 12 = 5x 27. 40 = 4(x + 2) 28. 4x = 27 + x 29. 3x + 19 = 19 30. 6x = 33 31. 7(x + 1) = 56 32. 7 + 5x = 27 33. 210x = 0 34. 6x – 24 = x + 1 35. 60 = x + 51 36. 77 – 2x = 9x 37. 1 2 38. 1 2 39. x=9 x=0 1 4 x = 4·5. Exercise 14.6 1. 2. 3. Write True OR False ? a 3 > 7 b –5 > –2 c – 4 < –3 d 2 > –2 e –21 < –20 f 5 > –1 g –19 < –18 h –50 > –49 i 20 < –20. COPY each statement and put < or > between each pair to make the statement true :a –3 ... 1 b –4 ... –5 c –9 ... –8 d –1 ... 3 e –14 ... –15 f 4 ... –3 g –7 ... –6 h –17 ... –18 i –24 ... –26. Solve the inequalities, leaving your answer in the form e.g. “x > 3”. a x + 3 > 11 b x–7<3 c 7x > 21 d 7x – 4 ≥ 31 e 4x + 5 < 21 f 5x – 2 < 2x + 13 g 2(x – 3) ≤ 8 h 3x – 1 > 19 – x i 10(x + 1) < 10. ©TeeJay Publishers 2007 page 59 Algebra Revision Exercise 1. 2. 3. 4. 5. 6. a P = 7Q + R Find P when Q = 6 and R = 8. b H = vw – xy Find H if v = 5, w = 9, x = 11 and y = 4. c M = n 2k Find M when n = 8 and k = 0·5. d T = 75 Find T when g = 24. g + 1 Multiply out the brackets :a 3(c + 6) b 11(a – 3d) c v(w – 8) d x(x – 1) e 5(3n – m) f –2(b + 4) g –6(c – y) h 2(2a + 3b – 5c) i 2(k – 3gy – 5h). Remove the brackets and simplify :a 4(x + 2) + 1 b 9(x + 2) – 15 c 3(x + 7) + 7x d 8(x + 3) – 7x e 4x + 5(x + 2y) f 10 + 4(x – 1) g 4(x + 2) + 7(x + 1) h 3(x – 2) + 5(x + 2) i 8(x – 1) – 6(x – 2). Factorise each of the following fully :a 2x – 18 b 20x + 4 c 8x – 20 d 9x + 30 e 4x + 6 y f 10x – 45w g 0·8v + 0·8w h 40p + 50q – 60r i 8x – 12y – 16z j ab + ac k m – mn l 2pq – 4aq. Find the value of x by solving these equations :a x + 11 = 17 b x – 9 = 11 c 12 – x = 0 d 17 + x = 40 e 6x = 42 f 2x = 11 g 3x + 4 = 28 h 6x – 1 = 41 i 7x – 7 = 0 j 5(x + 1) = 30 k 12(x – 1) = 0 l 5x – 4 = 3x + 3. Solve, leaving your answer in the form “x > 5”, etc. a x+6>9 b x–7<8 c x + 14 ≤ 14 d x–9≥9 e 8x ≤ 32 f 6x ≥ 54 g 10x < 200 h 2x > 17 i 2x – 12 > 2 j 7x + 1 ≥ 71 k 4x – 10 ≤ 0 l 8x + 10 < 14. ©TeeJay Publishers 2007 page 60 Algebra
© Copyright 2025 Paperzz