Math 1431 2 cos x 1 lim⇡ x! 2LAB 5x session A) 94 B)1 Quiz 62 A)- 5⇡ C)0 B) 2⇡ 5 3 D) 49 C) 3⇡ 9 D) 4⇡ 9 Example 1: x2 function 5x + 6 Give the expression for derivative of given f (x) = f (x) = 2x3 p x 2 x How to write a thesis Daria Kurzanova March,2015 lim⇡ x! 2 2 cos x 5x 1 D) 49 3⇡ 9 D) 4⇡ 9 x2 5x + 6 f Example (x) = 2: x 2 1 The following limit represents the derivative of a function f(x) at a number c. Determine f(x) and c. (1 + h)5 lim h!0 h 1 f (x) = 2x3 p x 2 4x3 + 5x x Example 3: (1 + h)5 lim Find derivative of the given function 1 (a + b)3 = a3 + 3a2 b + 3ab2 + b3 h h!0 f (x) = f (x) = 4x3 + 5x How to write a thesis Daria Kurzanova March,2015 1 lim⇡ x! 2 A) 94 B)1 C)0 B) 5 C) 9 D) 4⇡ 9 f (x) = f (x) = 2x3 p x2 5x + 6 x 2 x (1 + h)5 lim h!0 h f (x) = 1 D) 49 Example 4: Continuity 2 and Differentiability 2⇡ 3⇡ A)- 5⇡ 2 cos x 5x 1 4x3 + 5x Give the point function is3 not differentiable 3 where 3 the following 2 2 (a + b) = a + 3a b + 3ab + b f (x) = |x 6| 1 How to write a thesis Example 5: Daria Kurzanova Kurzanova Find the equation of a tangent Daria line for function f(x) at point -4, given that f(x) goes through the point (-4,5) and f’(-4)=6 March,2015 How to write a thesis March,2015 How to write a thesis Daria Kurzanova 2 cos x 1 2lim cos x 1 limMarch,2015 x! ⇡2 5x ⇡ Daria Kurzanova x! 2 5x 9 B)1 C)0 4 D) 49 9A) 4 A) 4 March,2015 B)1 C)0 D) 9 2 2⇡ 3⇡ 4⇡ A)2 5⇡ 2⇡B) 5 3⇡C) 9 4⇡D) 9 A)- 5⇡ B) 5 C) 9 D) 9 2 cos x 1 lim⇡ 2 x! 2 2 x5x 5x + 6 2 cos x 1 f (x)x = 5x + 6 f4 (x) = lim⇡ x 2 A) 94 x!B)1 C)0 D) x 2 5x 2 p 9 3 p f (x) = 2x x 3 f (x) x D) 49= 2x 5 2 2⇡ 3⇡ 4⇡ (1 + h) 1 5 A)- 5⇡ B) 5 C) 9 D) 9(1 + h) 1 lim lim h!0 h 4⇡ h!0 h C) 3⇡ D) 9 9 3 x2 5x + 6 f (x) = 3 4x + 5x f (x) = 4x2 + 5x f (x) = x 5x + 6 x 2 f (x) = 3p 3 2 2 3 2 3#b) 3=xa + (a + 3a b + 3ab + b 2 2 3 Question f (x)(a=+2x b) = a x+ 3a b + 3ab + b Find the derivative of the following function at point5 2 (1 + h) 1 f (x)f (x) = |x= |x6|2 6| 5 lim =2 5x 3x 1 (13x ++h) f (x)f (x) = 5x + h!0 h lim h!0 h C)10x + 3 D)26 A)10x B)23 3 f (x) = 4x + 5x x 3 3 2 2 3 (a + 2b) = 3 a + 3a b + 3ab + b a b + 3ab + b f (x) = |x 6| f (x) = 5x2 + 3x Question A)10x B)23 C)10x + 3 D)26 C)10x + 3 #D)26 Give the point where the following function is not differentiable ( ( x if x 1 x if x 1 f (x) = f (x) = x + 5 if x > 1. x + 5 if x > 1. 2 A)5 B)0 C)1 D)3 1 1 1 1 lim f (x) = |x 6| x! ⇡2 x 5x if x 1 f (x) = 7 5x2 + 3x fQuiz (x)9 = x + 5 if x > 1. A) 4 B)1 C)0 D) 49 Example 6: A)10x B)23 C)10x + 3 D)26 FindA)5 derivatives B)0 C)1 D)3 2 4 ( f (x) 4x5B) 2⇡ 3x +C) 5x3⇡ + 10D) 4⇡ A)- = 5⇡ 5 9 9 x if x 1 2= f (x) x 5x + 6 f (x) = x + 5 if x > 1. x p f (x) =A)5 2x3 x B)0 C)1 D)3 1h)5 5 4 (1 + f (x) = 4x 3x + 5x + lim10 h!0 h f (x) = x13 f (x) = 2 1 4x3 + 5x (a + b)3 = a3 + 3a2 b + 3ab2 + b3 f (x) = |x 6| 1 f (x) = 5x2 + 3x A)10x B)23 C)10x + 3 D)26 ( x if x 1 f (x) = x + 5 if x > 1. A)5 B)0 C)1 D)3 5 4 f (x) = 4x 3x + 5x + 10 Example 1 7: f (x) = x3 the following function. Find the equation of the normal line at the point (1, 3). Consider f (x) = x3 3x2 + 5x 1 f (x) = 1 x3 Example 8: Find the points3 where 2the tangent line is horizontal f (x) = x 3x + 5x f (x) = 2x4 x3 + 10 1 f (x) = x3 3x2 + 5x f (x) = 2x4 x3 + 10 f (x) = 3x2 f (x) = x3 3x2 + 5x f (x)Example = 2x4 9: x3 + 10 ⇡ Find derivative at point 4 f (x) = 3x2 4 sin x 4 sin x f (x) = 3x2 4 sin x Example 10: Find⇡ third derivative 4 f (x) = 8x3 15x2 + 3x + sin x f (x) = x3 3x2 + 5x f (x) = 2x4 x3 + 10 3 2 + 5x2 f (x)f = 3 3x + 5x2 (x)x3= x3x 4 3 4 f (x)f (x) = 2x= 2xx + x 103 + 10 f (x) = x 3x + 5x f (x) = 2x4 x3 + 10 f (x) = 3x2 2 f (x)f = (x)3x=33x42sin x24 sin x (x) = =xx3 3 3x 3x2 ++25x 5x ff(x) f (x) = x ⇡ 4 3x + 5x (x)⇡4 = =⇡2x 2x44 4 xx33++ 10 2 ff(x) 10 3 f (x) = 3x 4 sin x 3 2 x + 10 f (x) =4 2x f (x) = 8x3 f (x)Question = 8x #15x + 3x2 + sin x 3 ⇡ (x) = 8x 15x +following 3x + sinfunction x ⇡ f Find derivative of the at point 2 ⇡ 2 2 2 (x) 4x =33x 3x 4 sin x ff2 (x) f (x) = = + 53sin4xsin x f (x) f⇡ (x) = 4x 2+ 5 sin x f (x) = 3x 4 sin x = f (x) = 8x f⇡ (x) = 2 16 A)0, 22 15x + 3x + sin x 15x + 3x + sin x 9 16 4x + 5 cos x 32 B) 5, 02 2 C)0, 9 32 2 2 ⇡⇡ = 3 3 ⇡⇡ C) fA) (x) Question # B)C)⇡5⇡5 x D)D)-⇡3⇡3 A) B)f (x) = x4x 33 2 3+ 3 5 cos 2 3 D)0, 13 5 2 ⇡ = 35 of points ⇡ Findfx-coordinate where⇡tangent line is⇡horizontal (x) 15 5x 3 A)- x6 2 3 B) x464 C)-3x33 D)- 2x54 5 3 5 2 ff(x) 10 (x) =158x 8x ++3x 3x 10 ⇡= ⇡ ⇡ ⇡ 5 A)A)B)C)x355 D)-D)B) x356 C)3 x6 3 x4 A) B)- 99 A)0, f (x) A)0, 16 16 C) 40 C)0,3 5,5, =B) 8x + B) 0 3x C)0, 4 3 f (x) = 8x + 3x A)0, 9 10 D)- 1 10D)0, D)0,3 13 99 3232 9 1 C)0, D)0, D)0, 1 32 3 3 B) 5, 0 Question # 9 16 9 A)0, B) 5, 0 C)0, Find derivative of the following function 32 16 2 (x)==x35 x35 ff(x) 1515 5 A)B) 6 A)-x 6 B) x6 x 5 C)- 35 3D)- 54 5 C)D)x x x6 x5 x4 2 15x2 + 3x + sin x 4x3 + 5 cos x ⇡⇡4 2 A)3⇡ B)-3⇡ C)5⇡ 2 22 D)-3⇡ 2 2 2 3 4 ⇡ ⇡ 4 A) ⇡ 3 B)D)-x⇡3 2 C) 5 3 2 3 3 f (x) = 8x 15x + 3x + sin f (x)⇡ = 8x 15x + 3x + sin x ⇡⇡⇡ f4(x) = 8x4 + 3x3 10 3 8x4 + 3x 2 3 10 222 f (x) = 3 f(x) (x)A)0, = 9 4x 4x3B)++5, x 9 = 553cos 0cosx C)0, D)0, 1 f (x) = 8x 4 sin x
© Copyright 2026 Paperzz