Logarithms I. Logarithms a. Definition: A logarithm is the exponent required to produce a given number. b. The General Form is: y log a x . It can be rewritten as a y x . 1. Ex) log 2 8 3 In exponential form: 23 8 c. log a x is only defined if a and x are both positive, and a 1 . d. The Common Logarithm has a base of 10. In general usage, the subscript 10 is omitted when dealing with common logs. 1. Ex) log10 1 In exponential form: 101 10 e. A Natural Logarithm is a logarithm where the base is the number “ e ” (where e 2.72828 ). log e x is replaced with ln x . Natural logarithms play an important role in theoretical mathematics and the natural sciences. II. Properties of Logs: Identity Example Log of a Product: log 2 24 log 2 6 log 2 4 log xy log x log y Log of a Quotient: log x log x log y y log 2 10 log 2 10 log 2 3 3 Log with Exponent: log 2 83 3 log 2 8 1 1 log 4 32 log32 4 log 32 4 log x a a log x 1 1 log a x log x a log x a Identities: log a a 1 log a 1 0 ln e 1 ln 1 0 log 3 3 1 log 2 1 0 Negative Exponents: log a 1 log a x x log 3 1 log 3 9 9 Change in base (from base a to base 10): log a x log 2 5 log x ln x log a ln a www.rit.edu/asc log 5 ln 5 log 2 ln 2 Page 1 of 7 www.rit.edu/asc Page 2 of 7 III. Solving Equations Using Logarithms 1. 4 x 7 Take the log of both sides. You can use the ln 4 x ln 7 common logarithm or natural log, but in practice the natural log (or ln) is used more. Use the exponent property to rewrite, then divide to solve for x . x ln 4 ln 7 x ln 7 or log 4 7 ln 4 ln610 ln 11 2. 6 10 x 11x x Take the log of both sides. x ln 6 ln 10 x ln 11x ln 6 x ln 10 x ln 11 Use exponent property. ln 6 x ln 11 x ln10 Get x terms on one side. ln 6 xln 11 ln 10 Factor out the x terms. ln 6 ln 11 ln 10 Divide and solve for x . x 3. 4e x 7 ex 7 4 Divide by 4 to get e x by itself. ln e x ln 7 4 Take the log of both sides. x ln e ln 7 4 Use exponent rule. x(1) ln x ln 7 4 Use identity that ln e 1 . 7 or x ln 7 ln 4 4 Simplify. www.rit.edu/asc Page 3 of 7 Practice Problems: Write in exponential form: 1. log 3 27 =3 2. log 2 32 =5 3. log17 1 =0 Write it logarithmic form: 4. 6 2 36 5. 103 1000 6. 9 1 2 3 Solve for x: 7. log x 49 2 8. log 5 125 x 9. log 8 x 2 10. e x 11 www.rit.edu/asc Page 4 of 7 11. 1 x e 20 4 12. 5 x 26 13. log 16 x 1 2 14. log 7 x 1 15. log 3 1 x 9 Use the properties of logs to write in expanded form: 16. log 8 xz u3 17. log 7 4 v xy 2 18. log 5 4 z www.rit.edu/asc Page 5 of 7 19. ln x 2 yz 20. log 7 x3 y Solve the following equations using logarithms: 21. 5 x 6 22. e x 3 23. 2 x1 6 24. 32 x1 4 www.rit.edu/asc Page 6 of 7 Answers to Logarithms: 1. 33 27 13. x4 2. 25 32 14. x 3. 17 0 1 15. x 2 4. log 6 36 2 16. log 8 x log 8 z 5. log1000 3 17. 3 log 7 u 4 log 7 v 6. log 9 3 18. log 5 x 2 log 5 y 4 log 5 z 7. x7 19. 2 ln x ln y ln z 8. x3 20. 3 1 log 7 x log 7 y 2 2 9. x 64 21. x 10. x ln 11 22. x ln 3 11. x ln 80 23. x 12. x ln 26 ln 5 24. 1 ln 4 x 1 2 ln 3 1 2 www.rit.edu/asc 1 7 ln 6 or log 5 6 ln 5 ln 6 1 ln 2 Page 7 of 7
© Copyright 2026 Paperzz