MATH 1500 Fall 2014 Quiz 3C Solutions Solve each of the following questions. Show all work. [8] 1. Suppose y is a function of x defined inplicitly by ey + x2 y 2 = csc(xy). Determine dy/dx. Solution: Taking derivatives of both sides gives y dy e dx dy ⇒ ey dx dy ⇒ ey dx dy d = − csc(xy) cot(xy) (xy) + 2xy + x 2y dx dx dy dy 2 2 + 2xy + x 2y = − csc(xy) cot(xy) y + x dx dx dy dy + 2xy 2 + x2 2y = −y csc(xy) cot(xy) − x csc(xy) cot(xy) dx dx 2 2 Moving all the dy/dx terms to one side, factoring and then dividing yields dy dy dy + 2x2 y + x csc(xy) cot(xy) = −y csc(xy) cot(xy) − 2xy 2 dx dx dx dy y ⇒ e + 2x2 y + x csc(xy) cot(xy) = −y csc(xy) cot(xy) − 2xy 2 dx −y csc(xy) cot(xy) − 2xy 2 dy = y ⇒ dx e + 2x2 y + x csc(xy) cot(xy) ey 3 cos(6x) + ex [7] 2. Determine the derivative of f (x) = √ . Do not simplify. 3 x − tan x Solution: 0 f (x) = = √ 3 3 d √ + ex )( 3 x − tan x) − dx ( 3 x − tan x)(cos(6x) + ex ) √ ( 3 x − tan x)2 √ 3 1 − 6 sin(6x) + 3x2 ex ( 3 x − tan x) − 3 x−2/3 − sec2 x (cos(6x) + e3x ) √ ( 3 x − tan x)2 d (cos(6x) dx [5] 3. Evaluate tan 5x . x→0 sin 3x lim Solution: tan 5x sin 5x = lim x→0 sin 3x x→0 cos 5x sin 3x sin 5x 5x 5x = lim sin 3x x→0 3x cos 5x 3x sin 5x 5 5x = lim sin 3x x→0 3 cos 5x 3x 5(1) = 3(cos 0)(1) 5 = . 3 lim
© Copyright 2026 Paperzz