Definitions
Exponents and Order of
Operations
Objective: To use exponents, the
order of operations, and grouping
symbols.
variable – a symbol, usually a letter,
that represents one or more numbers
algebraic
l b i expression
i – a math
th phrase
h
with numbers, variables, and operation
symbols
Grouping Symbols
Definitions & Operation Symbols
Addition – sum,
more than, increase
Subtraction –
difference, less than,
decrease
Multiplication –
product, times, of
Division – quotient,
per
( ) parentheses
[ ] brackets
{ } b
braces
fraction bar
a+b
a-b
a●b, (a)(b), a(b),
(a)b, ab
a÷b, a/b, a , b√a
b
Powers
power -- an expression like x2, where x
is the base and 2 is the exponent
squared
d – to
t th
the 2nd power
cubed – to the 3rd power
Try these.
Expand and multiply.
a) 34
b) 82
c) 105
d) 193
1
SOLUTIONS
Expand and multiply.
a) 34
3(3)(3)(3) = 81
b) 82
8(8)=64
8(8) 64
105
10(10)(10)(10)(10)
=100,000
d) 193
(19)(19)(19)
6859
c)
Order of Operations
1.
2.
3.
4.
Examples
P.E.M.D.A.S.
1.
2.
3.
4.
Please Excuse My Dear Aunt Sally!
Simplify using the Order of Operations.
e) 6 – 10 ÷ 5
f) 3 · 6 – 42 ÷ 2
P – parentheses
th
((any grouping
i symbols)
b l )
E – exponents
M/D – multiply/divide
A/S – add/subtract
Examples – Solutions
Simplify using the Order of Operations.
e) 6 – 10 ÷ 5
f) 3 · 6 – 42 ÷ 2
6–2
3 · 6 – 16 ÷ 2
4
18 – 8
10
Grouping symbols (parentheses,
brackets, fraction bar)
E
Exponents
t
Multiply and divide in order from left
to right.
Add and subtract in order from left to
right.
More Examples
Simplify using the Order of Operations.
g) 4 · 7 + 4 ÷ 22
h) 53 + 90 ÷ 10
2
Simplify using the Order of
Operations.
More Examples
Simplify using the Order of Operations.
g) 4 · 7 + 4 ÷ 22
h) 53 + 90 ÷ 10
4·7+4÷4
125 + 90 ÷ 10
28 + 1
125 + 9
29
134
Simplify using the Order of
Operations. SOLUTIONS
i) 12 + 4(2 + 3) 2
i) 12 + 4i(2 + 3) 2
Simplify using the Order of
Operations.
j) 8 − 2[(5 − 3) 2 − 1]
12 + 4(5) 2
8 − 2[(2) 2 − 1]
12 + 4(25)
12 + 100
8 − 2[4 − 1]
8 − 2[3]
k) 5 − [3i(4 − 2) 2 ] + (3i5)
l) 14 ÷ 7i[12 ÷ (4 − 2) 2 i5 − 3]
8−6
2
112
Simplify using the Order of
Operations -- SOLUTIONS
k) 5 − [3(4 − 2) 2 ] + (3i5)
5 − [3(2) ] + (15)
2
5 − [3(4)] + 15
5 − [12] + 15
− 7 + 15
8
j) 8 − 2[(5 − 3) 2 − 1]
Examples
l) 14 ÷ 7[12 ÷ (4 − 2) 2 i5 − 3]
14 ÷ 7[12 ÷ (4 − 2) i5 − 3]
2
14 ÷ 7[12 ÷ (2) 2 i5 − 3]
14 ÷ 7[12 ÷ 4i5 − 3]
14 ÷ 7[3i5 − 3]
14 ÷ 7[15 − 3]
14 ÷ 7[12]
2[12]
24
⎛3⎞
m) ⎜ ⎟
⎝4⎠
⎛ 32 ⎞
=⎜ 2⎟
⎝4 ⎠
9
=
16
2
⎛1⎞
n) ⎜ ⎟
⎝5⎠
3
⎛ 13 ⎞
=⎜ 3⎟
⎝ 5 ⎠
1
=
125
⎛1⎞
o) ⎜ ⎟
⎝2⎠
4
⎛2⎞
i⎜ ⎟
⎝3⎠
2
⎛ 14 ⎞ ⎛ 2 2 ⎞
= ⎜ 4 ⎟⎜ 2 ⎟
⎝ 2 ⎠⎝ 3 ⎠
⎛ 1 ⎞⎛ 4 ⎞
= ⎜ ⎟⎜ ⎟
⎝ 16 ⎠ ⎝ 9 ⎠
4
1
=
=
144 36
3
Examples
5
⎛ 3 ⎞⎛ 2 ⎞
− ⎜
p)
⎟⎜
⎟
9
⎝ 4 ⎠⎝ 3 ⎠
5
⎛ 6 ⎞
=
− ⎜
⎟
9
⎝ 12 ⎠
5
1
−
9
2
10
9
=
−
18
18
1
=
18
=
3 ⎛ 2 3 ⎞
i ⎟
⎜
4 ⎝ 3 5 ⎠
3 ⎛ 6 ⎞
=
⎜
⎟
4 ⎝ 15 ⎠
Examples
q)
3 ⎛ 2 ⎞
⎜
⎟
4 ⎝ 5 ⎠
6
=
20
3
=
10
=
2
4
⎛5⎞
r) ⎜ ⎟ ÷
3
⎝6⎠
25 3
=
i
36 4
75
=
144
25
=
48
2(7 + 8) + 2
3·5 + 1
2(15) + 2
=
15 + 1
32
=
16
s)
=2
4
© Copyright 2026 Paperzz