11.6 Solve by Factoring Using Square Roots Name ___________________________ Learning Objective: A.SSE.2 I will rewrite an expression into factored form by square roots A.SSE.3 I will find the factors of a quadratic function and then solve to find the zeros A.APR.3 I will factor a quadratic function to determine the zeros A.REI.4 I will solve a quadratic equation by factoring first by square roots F.IF.8 I will use factoring to find the zeros of a quadratic function Factor each polynomial, if possible. If the polynomial cannot be factored, write not factorable. 1. 225b2 − a2 2. 4a2 − 9b2 3. n2 – 121 4. 121m2 − 144p2 5. x2 + 22x + 121 6. 81 + 18j + j2 7. 25c2 − 10c + 1 8. r2 − 26r + 169 9. w2 − 9 10. 9t2 − 1 11. b2 − 256 12. 4m2 + 12m + 9 13. 2x2 – 2 14. −54a2 + 6 15. 4x2 − 12x + 9 16. 25b2 − 40b + 16 Factor each expression completely. 17. 12x – 18y 18. 25x3 + 50x2 19. 4x3 + 12x2 + 3x + 9 20. x2 – 10x + 25 21. x2 + 13x + 22 22. x2 + 4x – 32 Solve each quadratic equation by factoring and applying the Zero-Product Property. 23. 9a2 − 64 = 0 24. 4d2 − 1 = 0 25. 16x2 − 9 = 0 26. 25p2 − 16 = 0 27. 36q2 = 49 28. 3b2 = 27 29. x2 − 18x + 81 = 0 30. 4p2 + 4p + 1 = 0 31. 9g2 − 12g + 4 = 0 32. 9x2 − 6x + 1 = 0 33. 25k2 + 20k + 4 = 0 34. p2 + 2p + 1 = 0 35. w2 − 6w + 9 = 0 36. 9a2 + 12a + 4 = 0 37. 27h2 = 48 38. 75g2 = 147 Answers: 1. (15b + a)(15b – a) 3. (n + 11)(n – 11) 5. (x + 11)(x + 11) 7. (5c – 1)(5c – 1) 9. (w + 3)(w – 3) 11. (b + 16)(b – 16) 13. 2(x2 – 1), 2(x + 1)(x – 1) 15. (2x – 3)(2x – 3) 8 17. 6(2x – 3y) 19) (4x2 + 3)(x + 3) 21) (x + 11)(x + 2) 23. (3a + 8)(3a – 8) = 0, a = 3 3 7 25. (4x + 3)(4x – 3) = 0, x = 27. (6q + 7)(6q – 7) = 0, q = 29. (x – 9)2 = 0, x = 9 4 6 2 2 31. (3g – 2)2 = 0, x = 33. (5x + 2)2 = 0, x = 35. (x – 3)2 = 0, x = 3 5 3 4 37. 3(9h2 – 16), 3(3h + 4)(3h – 4), h = 3
© Copyright 2026 Paperzz