Algebra II Honors 1.3 Chapter 1 Name _________________ Evaluate each expression for the given values of the variables. 1. 4v + 3(w + 2v) 5w; v = 2 and w = 4 2. c(3 a) c2; a = 4 and c = 1 3. 2(3e 5f) + 3(e2 + 4f); e = 3 and f = 5 Surface Area The expression 6s2 represents the surface area of a cube with edges of length s. What is the surface area of a cube with each edge length? 4. 3 inches 5. 1.5 meters Simplify by combining like terms. 6. 5x 3x2 + 16x2 8. t t2 2 t t 2 10. 2(j2 k) 6(j2 + 3k ) 7. 3 a b 9 + 4 b 9 9. 4a 5(a + 1) 11. x(x y) + y(y x) 12. Error Analysis Alana simplified the expression as shown. How should the problem be simplified? 1.4 Solve each equation. Check your answer. 13. 9(z 3) = 12z 14. 7y + 5 = 6y + 11 15. 5w + 8 12w = 16 15w 16. 3(x + 1) = 2(x + 11) 17. What three consecutive numbers have a sum of 126? Determine whether the equation is always, sometimes, or never true. 18. 6(x + 1) = 2(5 + 3x) 19. 3(y + 3) + 5y = 4(2y + 1) + 5 Solve each equation for y. 20. 4 ( y 3) g 9 21. a(y + c) = b(y c) 22. y3 2 t t 23. 3y yz = 2z Algebra II Honors 1.5 Chapter 1 Solve each inequality. Graph the solution. 24. 3(x + 1) + 2 < 11 25. 5t – 2(t + 2) ≥ 8 26. 2[(2y − 1) + y] ≤ 5(y + 3) 27. 28. 5 – 2(n + 2) ≤ 4 + n 29. −2(w – 7) + 3 > w – 1 1 (7a 1) 2a 7 3 Is the inequality always, sometimes, or never true? 30. 3(2x + 1) > 5x − (2 − x) 31. 2(x − 1) ≥ x + 7 32. 7x + 2 ≤ 2(2x − 4) + 3x 33. 5(x − 3) < 2(x − 9) Solve each compound inequality. Graph the solution. 1.6 34. 3x > – 6 and 2x < 6 35. 4x ≥ − 12 and 7x ≤ 7 36. 5x > − 20 and 8x ≤ 32 37. 6x < − 12 or 5x > 5 38. 6x ≤ − 18 or 2x > 18 39. 2x > 3 − x or 2x < x – 3 Solve each equation. Check your answers. 40. t 5 8 41. 3 z 7 12 42. 2 x 1 5 43. 4 2 y 5 9 Solve each equation. Check for extraneous solutions. 44. x 5 3x 7 45. 2t 3 3t 2 46. 4w 3 2 5 47. 2 z 1 3 z 2 Solve each inequality. Graph the solution. 1 2w 1 3 1 2 48. 4b 3 9 49. 50. 2 4 x 1 5 1 51. 3z 2 5 9 Name _________________
© Copyright 2026 Paperzz