Algebra II Honors Chapter 1 Name

Algebra II Honors
1.3
Chapter 1
Name _________________
Evaluate each expression for the given values of the variables.
1. 4v + 3(w + 2v)  5w; v = 2 and w = 4
2. c(3  a)  c2; a = 4 and c = 1
3. 2(3e  5f) + 3(e2 + 4f); e = 3 and f = 5
Surface Area The expression 6s2 represents the surface area of a cube with edges of length s. What is the surface area of a cube
with each edge length?
4. 3 inches
5. 1.5 meters
Simplify by combining like terms.
6. 5x  3x2 + 16x2
8. t 
t2 2
t t
2
10. 2(j2  k)  6(j2 + 3k )
7.
3 a  b 
9
+
4
b
9
9. 4a  5(a + 1)
11. x(x  y) + y(y  x)
12. Error Analysis Alana simplified the expression as shown. How should the problem be simplified?
1.4
Solve each equation. Check your answer.
13. 9(z  3) = 12z
14. 7y + 5 = 6y + 11
15. 5w + 8  12w = 16  15w
16. 3(x + 1) = 2(x + 11)
17. What three consecutive numbers have a sum of 126?
Determine whether the equation is always, sometimes, or never true.
18. 6(x + 1) = 2(5 + 3x)
19. 3(y + 3) + 5y = 4(2y + 1) + 5
Solve each equation for y.
20.
4
( y  3)  g
9
21. a(y + c) = b(y  c)
22.
y3 2
t
t
23. 3y  yz = 2z
Algebra II Honors
1.5
Chapter 1
Solve each inequality. Graph the solution.
24. 3(x + 1) + 2 < 11
25. 5t – 2(t + 2) ≥ 8
26. 2[(2y − 1) + y] ≤ 5(y + 3)
27.
28. 5 – 2(n + 2) ≤ 4 + n
29. −2(w – 7) + 3 > w – 1
1
(7a  1)  2a  7
3
Is the inequality always, sometimes, or never true?
30. 3(2x + 1) > 5x − (2 − x)
31. 2(x − 1) ≥ x + 7
32. 7x + 2 ≤ 2(2x − 4) + 3x
33. 5(x − 3) < 2(x − 9)
Solve each compound inequality. Graph the solution.
1.6
34. 3x > – 6 and 2x < 6
35. 4x ≥ − 12 and 7x ≤ 7
36. 5x > − 20 and 8x ≤ 32
37. 6x < − 12 or 5x > 5
38. 6x ≤ − 18 or 2x > 18
39. 2x > 3 − x or 2x < x – 3
Solve each equation. Check your answers.
40. t  5  8
41. 3 z  7  12
42. 2 x  1  5
43. 4  2 y  5  9
Solve each equation. Check for extraneous solutions.
44. x  5  3x  7
45. 2t  3  3t  2
46. 4w  3  2  5
47. 2 z  1  3  z  2
Solve each inequality. Graph the solution.
1
2w  1  3  1
2
48. 4b  3  9
49.
50. 2 4 x  1  5  1
51. 3z  2  5  9
Name _________________