KEY Practice Problems: IMFs and Phases CHEM 1A Temperature 1. How much energy (in kJ) is required to completely vaporize 200.0 g of 25.00ºC liquid water? Properties of Water Specific Heats (C): gas = 1.84 J/gºC liquid = 4.184 J/gºC solid = 2.09 J/gºC Heat of Vaporization: Hvap = 40.7 kJ/mol Heat of Fusion: Hfus = 6.01 kJ/mol Gas E boiling pt. F D B melting pt. C Liquid Solid A Heat added at a constant rate Heating 200.0 g of liquid water to the boiling point (segment DE): q1 = m Cliq T = m Cliq (Tf – Ti) 200.0 g 62760 J 1 kJ 103 J 4.184 J 100.00ºC – 25.00ºC = 62.760 kJ Vaporizing 200.0 g of liquid water (segment EF): 200.0 g H2O 1 mol H2O 18.016 g H2O Sum of the energies: qtotal = q1 + q2 = 11.10124334 mol H2O q2 = n Hvap = 11.10124334 mol H2O 515 kJ Answer: ________________ 40.7 kJ 1 mol H2O = 62760 J g ºC = 451.8206039 kJ 62. 760 kJ (q1) + 451. 8206039 kJ (q2) 514. 5806039 kJ (qtotal) 2. How much energy (in kJ) is required to melt 150.0 g of –18.00 ºC ice, and bring the resulting liquid Temperature water up to 25.00ºC? Properties of Water Specific Heats (C): gas = 1.84 J/gºC liquid = 4.184 J/gºC solid = 2.09 J/gºC Heat of Vaporization: Hvap = 40.7 kJ/mol Heat of Fusion: Hfus = 6.01 kJ/mol Gas F boiling pt. G E C melting pt. D Liquid B Solid A Heat added at a constant rate Heating 150.0 g of ice to the melting point (segment BC): q1 = m Csolid T = m Csolid (Tf – Ti) 150.0 g 5643 J 1 kJ 103 J 2.09 J 0.00ºC – –18.00ºC = 5643 J g ºC = 5.643 kJ Melting 150.0 g of ice (segment CD): 150.0 g H2O 1 mol H2O 18.016 g H2O = 8.325932504 mol H2O q2 = n Hfus = 8.325932504 mol H2O 6.01 kJ 1 mol H2O = 50.03885435 kJ Heating 150.0 g of liquid water (segment DE): q3 = m Cliq T = m Cliq (Tf – Ti) 150.0 g 15690 J 71.4 kJ Answer: ________________ 1 kJ 103 J 4.184 J 25.00ºC – 0.00ºC = 15690 J g ºC = 15.690 kJ Sum of the energies: qtotal = q1 + q2 + q3 5.6 43 kJ (q1) + 50.0 3885435 kJ (q2) + 15.6 90 kJ (q3) 71.3 7185435 kJ (qtotal) 3. Iridium (Ir, atomic # 77) has a face centered cubic unit cell with an edge length of 383.3 pm. Calculate the density (in g/cm3) of solid iridium. Face Centered Cubic: 4 atoms Ir 8 corners ( 1/8 1 mol Ir 192.2 g Ir 23 6.022 x 10 atoms Ir 383.3 pm atom atom ) + 6 faces ( 1/2 ) = 4 atoms Ir corner face 10−12 m 1 pm = 1.27665227 x 10−21 g Ir 1 mol Ir 1 cm = 3.833 x 10−8 cm −2 10 m Vcube = (edge length)3 = (3.833 x 10−8 cm)3 = 5.63140105 x 10−23 cm3 density = mass volume = 22.67 g/cm3 Answer: ________________ 1.27665227 x 10−21 g 5.63140105 x 10 −23 3 cm = 22.6702425 g/cm3
© Copyright 2026 Paperzz