Symmetric Property of Equahty 2.4 – Homework me ESthe property of equahty or congruence ihustrated. For more practice, see Extra Practice. C^ = XY f m^A = 45 and 45 = m/LB , then mAA = mAB. in the reason that justifies each step. Problem Fill Solving 1, Solve for x. Example Algebra Fill in the reason that justifies each step. Statements 1 and 2 Reasons 1. Solve for x.= 180 m∠CDE + m∠EDF page 90) a. (3x + 20)° mACDE + m/LEDF = 180 a. C D For more practice, see Extra Prac b. X + (3x + 20) = 180 x + (3x + 20) = 180 b. ving 4x + 20 = 180 c. Ax = 160 d. X = 40 e. 4x + 20 = 180 c. gebra Fill in the reason that justifies each step. 3{n + 4) 2. Solve for n. Solve for x. 4x = 160 d. Given: ^ = 42 X mACDE + m/LEDF = 180 XZ + ZY = XY a. ? a. x = 40 e. 3(n ++ 20) 4) + = 3n 180 = 42 X + (3x 3?7 + 12 + 3« = 42 4x + 20 = 180 2, Solve for n. 6n + 12 = 42 Given: XY = 42 Ax = 160 6n = 30 StatementsX =n 40 = 5 XZ + ZY = XY a. (3x + 20)° D b. b. c.J_ c. d. JL d. e.^ Reasons f.e. ? + 4) in Algebra 3n Lesson 2-4 3{n Reasoning Solve for n. Given: ^ C 3n 3(n + 3) + 3n = 42 b. = 42 XZ + ZY = XY 3n + 12 + 3n = 42 c. 3(n + 4) + 3n = 42 X a. ? b. 3?7 + 12 + 3« =6n 42 + 12 = 42 d. c.J_ 6n + 12 = 42 d. JL 6n = 30 6n = 30 n = 5 n=5 e. f. e.^ f. ? Lesson 2-4 Reasoning in Algebra 91 Give a reason for each step. 3. Statements 1 x − 5 = 10 2 Reasons a. "1 % 2 $ x − 5' = 20 #2 & b. x −10 = 20 c. x = 30 d. 4. Statements 5 ( x + 3) = −4 a. 5x +15 = −4 b. 5x = −19 c. 19 5 d. x=− Reasons Name the property that justifies each statement. 5. ∠Z ≅ ∠Z 6. 2 (3x + 5) = 6x +10 7. If 12x = 84, then x = 7. 8. If ST ≅ QR , then QR ≅ ST 9. If m∠A = 15 , then 3m∠A = 45 10. XY = XY 11. If 3x + 14 = 80, then 3x = 66. 12. If KL = MN, then MN = KL. 13. If 2x + y = 5 and x = y, then 2x + x = 5. 14. If AB – BC = 12, then AB = 12 + BC. 15. If ∠1 ≅ ∠2 and ∠2 ≅ ∠3 , then ∠1 ≅ ∠3 . Use the given property to complete each statement. 16. Addition Property of Equality If 2x – 5 = 10, then 2x = __________. 17. Subtraction Property of Equality If 5x + 6 = 21, then __________ = 15. 18. Symmetric Property of Equality If AB = YU, then __________. 19. Symmetric Property of Congruence If ∠H ≅ ∠K , then __________ ≅ ∠H . 20. Reflexive Property of Congruence ∠PQR ≅ __________ 21. Distributive Property 3(x – 1) = 3x - __________ 22. Substitution Property If LM = 7 and EF + LM = NP, then __________ = NP. 23. Transitive Property of Congruence If ∠XYZ ≅ ∠AOB and ∠AOB ≅ ∠WYT , then __________. 24. Multiplication Property of Equality If ^ 1 TR = UW , then __________. 3 25. Fill in the reason that justifies each step. 27. Algebra in the reason AD .justifies each step. Given: CFill is the midpoint ofthat Given: C is the midpoint of AD. Statements CC is AD.a. is the the midpoint midpoint ofofAD 4x 2x + 12 Reasons D a. AC = CD b. 4x =2x + 12 c. AC = CD b. 2x = 12 d. = 6 Algebra FillX in the reason that justifies each step. e. 4x = 2x + 12 c. In the figure at the right, KM Given: 28. C isAlgebra the midpoint of AD. g C 28, is the 2x-5 = 35. a. Solve for x. Justify each step. b. Find theoflength midpoint AD.of KL. a. 4x 2x K 2x + 12 M D 2x = 12 d. AC = CD b. X' 29. Algebra In the figure at the right, m/I GF7 = 128. c. 4x =2x +a. 12 Solve for x. Justify each step. (9x - 2)° X = 6 e. 2x = 12 b. Find m/LEFI. d. e. X = 6 30. Algebra Fill in the reason that justifies each step. Given: bisects ^ABD. 26. In theBC figure at the right, KM = 35. Algebra In the figure at the right, KM = 35. ^Cx.bisects Z^ABD. step. a. a. Solve for Justify a. Solve for xeach . Justify each step. =ofmACBD b.Reasons Statements length KL. b. Find them/LABC a. 6n + 1 = 4n + 19 a. c. 2n = 18 Algebra In the figure at the right, m/I GF7 = 128. e. n = 9 a. Solve for b. x. Justify each step. b. d. 2x-5 K M (4« + 19) (9x - 2)° Error Analysis The steps below "show" that 1 = 2. Find the error. enge b. Find 31. m/LEFI. c.Given: a = b c. Algebra Fill in the reason that justifies each step. Given a = b ah = 52 Given: BC d. bisects ^ABD. a2 = b^-a^ Multiplication Property of Equality d. Subtraction Property of Equality ^C bisects Z^ABD. a. a) = {b + a) {b - a) Distributive Property a = b m/LABC = mACBD Division Property of Equahty e. a = + a a + 6n + 1 = 4n + 19 e. b. Substitution Property a c. 2x h ding ise 28, allenge X' Landers, ers Fourth em y as" rs. K 29. Algebra In the figure at the right, m/I GF7 = 128. a.a. Solve Solvefor forx.x.Justify Justify each eachstep. step. a. b. Statements Find m/LEFI. M (9x - 2)° Reasons a. 30. Algebra Fill in the reason that justifies each step. b. Given: BC bisects ^ABD. b. ^C bisects Z^ABD. c. a. m/LABC = mACBD b. justifies ^ 27. Algebra Fill in the reason that c. 6n + 1Given: = 4nC+is the 19 midpoint ofc. AD. 2nC=is the 18 midpoint of AD. d. d. nAC = =9 CD 4x =2x + 12 d. e. each step. 4x 2x + 12 (4« + 19) D a. b. c. 31. Error Analysis The steps below "show" that 1 = 2. Find the error. 2x = 12 d. e. e. X = 6 Given: a = b nd solving Exercise 28, e p. 95. dge, 2x 27. In the figure at the right, ∠GFI = 128 . e. 28. Algebra In the figure at the right, KM = 35. Given a = b Reading Math a. Solve for x. Justify each step. .52the length of KL. or help with reading b. Find m∠EFI Multiplication ahb. = Find nection 2x-5 28. Algebra In the figure at the right, KM = 35. a. Solve for x. Justify each step. b. Find the length of KL. X' a2 = b^-a^ 2x-5 K b. Find m/LEFI. = b + a M Property of Equality Subtraction Property of Equality 29. Algebra In the figure at the right, m/I GF7 = 128. a)a. =Solve {b for + a) {b - a) x. Justify each step.Distributive Property a 2x (9x - 2)° Division Property of Equahty Property = a + Fill a in the reason thatSubstitution 30. aAlgebra justifies each step. 28. Fill in the reason that justifies each step. aGiven: = 2aBC bisects ^ABD. Simplify. Division Property of Equality 1^C= bisects 2 a. ∠ABDZ^ABD. Given: BC bisects . m/LABC = mACBD b. Statements Reasons Relationships You know that the relationships "is equal to" and "is congruent to' 6n + 1 = 4n a. + 19 c. a. BC bisects ∠ABD + that 19) this is are reflexive, symmetric, In a later chapter, you will(4«see 2n = 18 and transitive. d. also true for the relationship "is similare. to." Consider the following relationships n = 9 State whether each relationship is reflexive,symmetric, transitive, b.among b. m∠ABCpeople. = m∠CBD Challenge 31. Error Analysis The steps below "show" that 1 = 2. Find the error. or none of these. Given: a = b Sample: The relationship "is younger than" is transitive. If Sue is younger Given a = b c. c. 6n + 1 = 4n + 19 than Fred and Fred is younger than Alana, then Sue is younger than Alana. Multiplication Property of Equality ah = 52 The relationship "is younger than" is not reflexive because Sue is not younger a2 = b^-a^ Subtraction Property of Equality because if Property Sue is younger than Fred, than herself. It is also not symmetric Distributive a) = {bd.+ a) {b - a) d. 2n = 18 Fred is not younger than Sue. a = b + a a = a + as a 32. has the same birthday e. n = 9 a = 2ae. 34. hves in the same state as 1 = 2 36. is the same height as Division Property of Equahty Substitution Property 33. is taller than Simplify. 35. lives in a different state than Division Property of Equality 37. is a descendant of Answer Key 1. 2. Statements m∠CDE + m∠EDF = 180 x + (3x + 20) = 180 4x + 20 = 180 4x = 160 x = 40 Statements XZ + ZY = XY 3(n + 3) + 3n = 42 3n + 12 + 3n = 42 6n + 12 = 42 6n = 30 n=5 3. Reasons a. Angle Addition Postulate b. Substitution Property c. Simplify d. Subtraction Property of Equality e. Division Property of Equality Reasons a. Segment Addition Postulate b. Substitution Property c. Distributive Property d. Simplify e. Subtraction Property of Equality f. Division Property of Equality Statements Reasons 1 x − 5 = 10 2 "1 % 2 $ x − 5' = 20 #2 & x −10 = 20 x = 30 4. a. Given b. Multiplication Property of Equality c. Distributive Property d. Addition Property of Equality Statements Reasons 5 ( x + 3) = −4 5x +15 = −4 a. Given b. Distributive Property 5x = −19 c. Subtraction Property of Equality 19 d. Division Property of Equality x=− 5 5. Reflexive Property of Congruence 6. Distributive Property 7. Division Property of Equality 8. Symmetric Property of Congruence 9. Multiplication Property of Equality 10; Reflexive Property of Equality 11. Subtraction Property of Equality 12. Symmetric Property of Equality 13. Substitution Property 14. Addition Property of Equality 15. Transitive Property of Equality 16. 15 17. 5x 18. YU = AB 19. ∠K 20. ∠PQR 21. 3 22. EF + 7 23. ∠XYZ ≅ ∠WYT 24. TR = 3UW 25. Statements C is the midpoint of AD AC = CD 4x = 2x + 12 2x = 12 X=6 26. Statements a. KL + LM = KM b. 2x – 5 + 2x = 35 c. 4x – 5 = 35 d. 4x = 40 e. x = 10 Reasons a. Given b. Definition of a midpoint c. Substitution Property of Equality d. Subtraction Property of Equality e. Division Property of Equality Reasons a. Segment Addition Postulate b. Substitution Property c. Simplify d. Addition Property of Equality e. Division Property of Equality 27. a. Statements a. m∠GFE + m∠EFI = m∠GFI b. 9x – 2 + 4x = 128 Reasons a. Angle Addition Postulate b. Substitution Property c. 13x – 2 = 128 d. 13x = 130 c. Simplify d. Addition Property of Equality e. x = 10 e. Division Property of Equality b. 40 28. Statements a. BC bisects ∠ABD b. m∠ABC = m∠CBD c. 6n + 1 = 4n + 19 d. 2n = 18 e. n = 9 Reasons a. Given b. Definition of an Angle Bisector c. Substitution Property d. Subtraction Property of Equality e. Division Property of Equality
© Copyright 2025 Paperzz