C H A P T E R 1 1 Analytic Geometry in Three Dimensions Section 11.1 The Three-Dimensional Coordinate System . . . . . . 1029 Section 11.2 Vectors in Space . . . . . . . . . . . . . . . . . . . . . 1037 Section 11.3 The Cross Product of Two Vectors . . . . . . . . . . . 1042 Section 11.4 Lines and Planes in Space . . . . . . . . . . . . . . . . 1048 Review Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1055 Problem Solving Practice Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1061 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1068 C H A P T E R 1 1 Analytic Geometry in Three Dimensions Section 11.1 ■ ■ The Three-Dimensional Coordinate System You should be able to plot points in the three-dimensional coordinate system. The distance between the points x1, y1, z1 and x2, y2, z2 is d x2 x12 y2 y12 z2 z12. The midpoint of the line segment joining the points x1, y1, z1 and x2, y2, z2 is x1 x2 y1 y2 z1 z2 , , . 2 2 2 The equation of the sphere with center h, k, j and radius r is x h2 y k2 z j2 r2. You should be able to find the trace of a surface in space. ■ ■ ■ Vocabulary Check 1. three-dimensional 2. xy-plane, xz-plane, yz-plane x x2 y1 y2 z1 z 2 5. 1 , , 2 2 2 8. trace 4. Distance Formula 7. surface, space 1. A1, 4, 3, B1, 3, 2, C3, 0, 2 z 3. 3. octants 6. sphere 2. A6, 2, 3, B2, 1, 2 C2, 3, 0 4. z 3 5 (−3, − 2, −1) 4 3 (2, 1, 3) 2 (− 1, 2, 1) (3, 0, 0) y −2 1 3 4 5 x 2 2 3 4 y −5 −4 −3 −2 1 2 4 5 1 −4 −3 −5 6. 3 −4 2 −3 1 −5 −4 −3 −2 (3, −1, 0) 4 x y 2 1 −2 1 2 3 −5 3 z 5 4 (4, 0, 4) 3 2 1 −4 −3 −3 −4 2 −2 −2 z (− 4, 2, 2) 1 −3 x 5. −4 6 x 5 −4 y 1 2 3 −3 −4 −5 5 6 (0, 4, −3) 1029 1030 Chapter 11 Analytic Geometry in Three Dimensions 8. x 6, y 1, z 1 ⇒ 6, 1, 1 7. x 3, y 3, z 4: 3, 3, 4 9. y z 0, x 10: 10, 0, 0 10. x 0, y 2, z 8 ⇒ 0, 2, 8 11. Octant IV 12. Octant VI 13. Octants I, II, III, IV (above the xy-plane) 14. Octants III, IV, VII, or VIII 15. Octants II, IV, VI, VIII 16. Octants I, II, VII, or VIII 17. d 5 02 2 02 6 02 18. d 7 12 0 02 4 02 25 4 36 36 16 65 units 52 213 19. d 7 32 4 22 8 52 20. d 4 22 1 12 9 62 42 22 32 4 9 16 4 9 13 29 5.385 21. d 6 12 0 42 9 22 22. d 1 22 1 32 7 72 7 2 42 7 2 9 16 49 16 49 25 114 5 10.677 23. d 1 02 0 32 10 02 24. d 2 02 4 62 0 32 1 9 100 4 100 9 110 10.488 113 25. d1 2 02 5 02 2 22 4 25 29 d2 0 02 4 02 0 22 16 4 20 25 d3 0 22 4 52 0 22 4 1 4 9 3 d12 d22 d32 29 26. d1 4 22 4 12 1 22 36 25 1 62 d2 4 22 4 52 1 02 4 1 1 6 d3 2 22 1 52 2 02 16 36 4 56 214 d12 d22 d 32 62 Section 11.1 The Three-Dimensional Coordinate System 1031 27. d1 2 02 2 02 1 02 4 4 1 9 3 d2 2 02 4 02 4 02 4 16 16 36 6 d3 2 22 4 22 4 12 36 9 45 35 d12 d22 9 36 45 d32 28. d1 1 12 3 02 1 12 3 d2 1 12 0 02 3 12 2 d3 1 12 0 32 3 12 13 d32 13 d12 d22 29. d1 5 12 1 32 2 22 16 4 16 36 6 d2 5 12 1 12 2 22 36 4 40 210 d3 1 12 1 32 2 22 4 16 16 36 6 d1 d3 Isosceles triangle 30. d1 7 52 1 32 3 42 4 4 1 9 3 d2 3 72 5 12 3 32 16 16 32 42 d3 3 52 5 32 3 42 4 4 1 9 3 d1 d3 3. Isosceles triangle 31. 3 2 0, 22 0, 4 2 0 32, 1, 2 32. Midpoint: 1 2 2, 5 2 2, 12 2 32 , 27, 12 33. Midpoint: 3 2 3, 62 4, 10 2 4 0, 1, 7 34. Midpoint: 12 3, 5 2 7, 32 1 1, 6, 2 35. Midpoint: 6 2 4, 22 2, 5 2 6 1, 0, 112 36. Midpoint: 32 6, 5 2 4, 5 2 8 92, 92, 132 37. Midpoint: 22 7, 8 2 4, 10 2 2 52, 2, 6 38. Midpoint: 9 2 9, 52 2, 1 2 4 9, 27, 23 39. x 32 y 22 z 42 16 40. x 32 y 42 z 32 4 41. x 02 y 42 z 32 32 42. x 22 y 12 z 82 36 x2 y 42 z 32 9 43. Radius Diameter 5 2 x 32 y 72 z 52 52 25 44. Radius Diameter 4: x 02 y 52 z 92 42 16 2 1032 Chapter 11 45. Center: Analytic Geometry in Three Dimensions 30 00 06 3 , , , 0, 3 2 2 2 2 Radius: 3 32 Sphere: x 2 46. Center: 3 2 2 0 02 0 32 y 02 z 32 2 1 2 4 2 6 1 , , , 1, 4 2 2 2 2 Radius: 2 21 Sphere: x 2 1 2 2 94 9 454 45 4 2 12 2 42 y 12 z 42 94 9 4 614 61 4 25 25 47. x 2 5x 4 y 2 z 2 4 x 52 2 y 2 z 2 254 5 Center: 2, 0, 0 Radius: 5 2 48. x 2 y 2 8y 16 z 2 16 x 2 y 42 z2 16 Center: 0, 4, 0 Radius: 4 49. x 2 4x 4 y 2 2y 1 z 2 6z 9 10 4 1 9 x 22 y 12 z 32 4 Center: 2, 1, 3 Radius: 2 50. x2 6x 9 y2 4y 4 z2 9 9 4 x 32 y 22 z2 4 Center: 3, 2, 0 Radius: 2 51. x2 4x 4 y2 z2 8z 16 19 4 16 x 22 y2 z 42 1 Center: 2, 0, 4 Radius: 1 52. x2 y2 8y 16 z2 6z 9 13 16 9 x2 y 42 z 32 12 Center: 0, 4, 3 Radius: 12 23 Section 11.1 The Three-Dimensional Coordinate System x 2 y 2 z 2 2x 23 y 8z 73 9 53. x 2 2x 1 y 2 23 y z 2 8z 16 739 1 19 16 2 x 12 y 13 z 42 9 1 9 Center: 1, 13, 4 Radius: 3 5 54. x2 y2 z2 x 3y 2z 2 x2 x 14 y2 3y 94 z2 2z 1 52 14 94 1 x 12 2 y 32 2 z 12 1 1 3 Center: 2, 2, 1 Radius: 1 9x 2 6x 9y 2 18y 9z 2 1 55. x 2 23 x 19 y 2 2y 1 z 2 19 19 1 Center: x 13 2 y 12 z 2 1 13, 1, 0 Radius: 1 1 33 1 y2 8y 16 z2 2z 1 16 1 4 4 4 56. x2 x x 21 Center: 2 y 42 z 12 9 12, 4, 1 Radius: 3 57. 58. yz trace x 0: y 32 z2 25 Circle z (x − 1) 2 + z 2 = 36 z (0, −3, 0) −8 4 −6 −2 2 4 (1, 0, 0) x 6 − 10 −2 4 2 −4 6 10 8 2 −2 y 2 y 6 x 8 −6 (y + 3) 2 + z 2 = 25 59. z (y − 3) 2 + z 2 = 5 2 (− 2, 3, 0) x 2 2 y −6 −8 1033 1034 Chapter 11 Analytic Geometry in Three Dimensions 60. xy trace z 0: x 2 y 12 3 Circle z 61. 6 z 5 4 −4 2 −4 (0, 1, − 1) −2 2 4 x 6 −4 −6 y x2 + (y − 1) 2 5 x 4 3 2 2 3 4 5 y =3 62. x2 y2 6y z2 8z 16 21 16 z x2 y2 6y z 42 5 z1 4 5 x2 y2 6y −6 z2 4 5 x2 y2 6y −4 2 −2 2 x 63. The length of each side is 3. Thus, x, y, z 3, 3, 3. (b) Assume the north and south poles are on the z-axis. Lines of longitude that run north-south are traces of planes containing the z-axis. These shapes are circles of radius 3963 miles. y 4 64. x 4, y 4, z 8 66. (a) x 2 y 2 z 2 39632. −4 −2 4, 4, 8 65. d 165 ⇒ r 165 2 82.5 x 2 y 2 z 2 165 2 2 (d) The prime meridian is a trace of a plane containing the z-axis. It is a semi-circular arc running from pole to pole. (e) The equator is the trace of the plane containing the x- and y-axes. (c) Latitudes are traces of planes perpendicular to the z-axis. These shapes are circles. 67. False. x is the directed distance from the yz-plane to P. 68. False. The trace could be a single point, or empty. 69. In the xy-plane, the z-coordinate is 0. In the xz-plane, the y-coordinate is 0. In the yz-plane, the x-coordinate is 0. 70. It is a plane. 71. The trace is a circle, or a single point. 72. The trace will be a line in the xy-plane (unless the plane is the xy-plane). 73. xm x2 x1 ⇒ x2 2xm x1 2 Similarly for y2 and z2, x2, y2, z2 2xm x1, 2ym y1, 2z m z1. 74. x2 2xm x1 25 3 7 y2 2ym y1 28 0 16 z2 2zm z1 27 2 12 7, 16, 12 Section 11.1 9 9 2 4 4 75. v 2 3v v 3 2 v 2 78. x 2 3x x 32 2 z 72 17 3 ± 2 2 v 3 17 ± 2 2 9 9 1 4 4 49 49 19 4 4 76. z2 7z 17 4 79. 2 7 55 ± 2 2 z 7 5 ± 5 2 2 13 3 ± 2 2 x 3 13 ± 2 2 x y v 32 v 3 18 tan 32 x 5 4 2 89 5 ± 4 4 10 1 ± 2 2 x 5 89 ± 4 4 1 10 ± 2 2 83. v 4i 5j, Quadrant I Quadrant II 22 5 5 ± 2 2 89 16 x 12 5 4 5 5 ± 2 2 10 4 82. v 1, 2 2 5 25 25 4 80. x 2 x 2 16 16 y 81. v 3i 3j, Quadrant IV 2 x 1 9 1 4 4 4 2 1035 25 25 5 4 4 x 52 4y 2 4y 9 y 12 x 77. x 2 5x 125 4 z y2 y 13 4 The Three-Dimensional Coordinate System 5 v 16 25 41 2 ⇒ 116.6 1 tan 5 ⇒ 51.34 4 3 tan 1 ⇒ 3 45 or 315 84. v 10, 7 85. u v 4, 1 Quadrant IV v 100 49 149 tan 7 ⇒ 325.0 10 3, 5 86. u v 1, 0 43 15 20 7 2 87. a0 1, an an1 n2 a1 1 12 2 a2 2 22 6 a3 6 32 15 a4 15 42 31 1 First differences: Second differences: Neither model 2 1 6 4 3 15 9 5 31 16 7 2, 6 1036 Chapter 11 Analytic Geometry in Three Dimensions 88. a0 0, an an1 1 a1 0 1 1 a2 1 1 2 a3 3 a4 4 1 0 1 First difference 2 1 Second difference 0 3 1 0 4 1 0 Linear model 89. a1 1, an an1 3 a2 1 3 2 a3 2 3 5 a4 5 3 8 a5 8 3 11 1 First differences: Second differences: 2 3 5 8 3 11 3 0 3 0 0 14 24 Linear model 90. a1 4, an an1 2n a2 4 22 0 a3 0 23 6 a4 6 24 14 a5 14 25 24 4 First difference 6 0 4 Second difference 6 2 8 2 10 2 Quadratic model 91. x 52 y 12 49 92. x 32 y 62 81 93. y 12 4px 4, p 3 94. x h2 4py k p 5,h, k 2, 5 y 12 43x 4 x 22 45 y 5 y 12 12x 4 x 22 20 y 5 95. a 3, b 2, center: 3, 3, horizontal major axis x 32 y 32 1 9 4 Section 11.2 96. Center: 0, 3 Vertical major axis length 9 ⇒ a c 3 ⇒ b2 a2 c2 Vectors in Space 1037 9 2 81 45 9 4 4 x 02 y 32 1 454 814 97. Center: 6, 0, horizontal transverse axis 98. Center: 3, 5 Vertical transverse axis a 2, c 6, b2 c2 a2 36 4 32 a 4, c 5, b2 c2 a2 25 16 9 x 62 y 2 1 4 32 y 52 x 32 1 16 9 Section 11.2 ■ ■ ■ ■ Vectors in Space Vectors in space v v1, v2, v3 have many of the same properties as vectors in the plane. The dot product of two vectors u u1, u2, u3 and v v1, v2, v3 in space is u v u1v1 u2v2 u3v3. Two nonzero vectors u and v are said to be parallel if there is some scalar c such that u cv. You should be able to use vectors to solve real life problems. Vocabulary Check 1. zero 2. v v1i v2 j v3 k 4. orthogonal 5. parallel 1. v 0 2, 3 0, 2 1 2, 3, 1 3. component form 2. (a) v 1 1, 4 4, 0 4 0, 0, 4 (b) z z 3 3 2 2 −3 1 −2 −2 − 3 (− 2, 3, 1) 1 2 2 −4 −3 −2 −1 1 −3 −2 −1 1 3 1 4 2 3 3 y x −2 −3 −4 x 3. (a) v 1 6, 1 4, 3 2 7, 5, 5 (b) v 7 2 52 5 2 49 25 25 99 311 (c) −4 11 v 1 7, 5, 5 7, 5, 5 33 v 311 2 3 4 y (0, 0, −4) 4. (a) v 0 7, 0 3, 2 5 7, 3, 3 (b) v 49 9 9 67 (c) Unit vector: 67 1 7, 3, 3 7, 3, 3 67 67 1038 Chapter 11 Analytic Geometry in Three Dimensions z 5. (a) (b) z 〈2, 2, 6〉 6 4 5 3 −4 2 −3 4 3 2 2 3 1 1 3 2 3 4 〈−1, −1, − 3〉 4 4 −3 x −2 4 1 1 2 3 y − 4 − 3 −2 y −4 − 3 − 2 1 −4 x (c) (d) z z 4 3 3 9 , , 2 2 2 5 4 3 −4 2 −3 3 〈0, 0, 0〉 2 1 y −4 −3 −2 2 2 1 3 −4 − 3 − 2 4 2 3 4 −4 −3 x 3 −3 x −2 4 2 −2 4 3 y 1 1 6. v 1, 2, 2 (b) 2v 2, 4, 4 (a) v 1, 2, 2 z z 4 4 3 3 −4 2 −3 −4 2 −3 1 1 y − 6 − 5 −4 − 3 1 〈1, − 2, − 2〉 y −4 − 3 − 2 2 2 3 −2 3 4 −4 5 5 (d) 2 v 2 , 5, 5 1 1 (c) 2 v 2, 1, 1 z z − 5 , 5, 5 2 6 2 1 2 −3 x −4 1 1 −2 4 −3 x 〈− 2, 4, 4〉 − 1 , 1, 1 5 2 −2 4 3 −2 −1 2 −4 2 −3 y 1 1 2 1 −1 y −3 −2 x 2 3 −2 4 1 1 −2 x 7. z u 2v 1, 3, 2 21, 2, 2 3, 7, 6 8. z 71, 3, 2 1, 2, 2 15 5, 0, 5 7, 19, 13 9. 2z 4u w ⇒ z 124u w 1241, 3, 2 5, 0, 5 10. z u v 1, 3, 2 1, 2, 2 0, 1, 0 12, 6, 32 2 3 4 5 Section 11.2 11. v 7, 8, 7 Vectors in Space 1039 12. v 22 02 52 4 25 29 49 64 49 162 92 13. v 42 32 72 14. v 22 12 62 41 16 9 49 74 15. v 1 1, 0 3, 1 4 0, 3, 5 v 0 32 52 34 17. (a) 8, 3, 1 u u 74 (b) 74 1 8i 3j k 8, 3, 1 74 74 16. v 1 0, 2 1, 2 0 1, 3, 2 v 1 9 4 14 18. (a) (b) u 3, 5, 10 1 3i 5j 10k 134 134 u 1 3i 5j 10k 134 74 1 8i 3j k 8, 3, 1 74 74 19. u v 4, 4, 1 2, 5, 8 20. u v 34 110 61 28 8 20 8 4 21. u v 2, 5, 3 9, 3, 1 22. u v 06 34 62 0 18 15 3 0 23. cos uv 8 ⇒ 124.45 u v 825 24. cos 25. cos uv 120 ⇒ 109.92 u v 170073 26. cos 27. 32 8, 4, 10 12, 6, 15 ⇒ parallel uv 5 ⇒ 49.80 u v 106 uv 100 ⇒ 65.47 u v 464125 28. u v 2 3 5 10 0 and u cv ⇒ neither 29. u v 3 5 2 0 ⇒ orthogonal 30. 8u 8 1, 12, 1 8, 4, 8 v ⇒ parallel 31. v 7 5, 3 4, 1 1 2, 1, 2 32. v 4 2, 8 7, 1 4 2, 1, 3 u 4 7, 5 3, 3 1 3, 2, 4 u 0 4, 6 8, 7 1 4, 2, 6 Since u and v are not parallel, the points are not collinear. Since u 2v, the points are collinear. 33. v 1 1, 2 3, 5 2 2, 1, 3 34. v 1 0, 5 4, 6 4 1, 1, 2 u 3 1, 4 2, 1 5 4, 2, 6 u 2 1, 6 5, 7 6 1, 1, 1 Since u 2v, the points are collinear. Since u and v are not parallel, the points are not collinear. 1040 Chapter 11 Analytic Geometry in Three Dimensions 35. v 2, 4, 7 q1 1, q2 5, q3 0 ⇒ 2 q1 1 4 q2 5 7 q3 q1 3 ⇒ q2 1 q3 7 ⇒ Terminal point is 3, 1, 7. 36. 4, 1, 1 x 6, y 4, z 3 ⇒ x, y, z 10, 5, 2 37. v 4, 32, 14 q1 2, q2 1, q3 32 4 q1 2 ⇒ q1 6 3 2 q2 1 ⇒ q2 52 14 q3 32 ⇒ q3 74 Terminal point: 6, 52, 74 38. 52, 12, 4 x 3, y 2, z 12 3 7 ⇒ x, y, z 11 2 , 2, 2 cu c2 4c2 9c2 c 14 3 ⇒ c± 3 314 ± 14 14 41. v q1, q2, q3 ⇒ c 12 6 6 ⇒ c ± 6 24 6 42. v lies in xz-plane ⇒ y 0. Since v lies in the yz-plane, q1 0. Since v makes an angle of 45, q2 q3. Finally, v 4 implies that q22 q32 16. Thus, q2 q3 22 and v 0, 22, 22 , or q2 22 and q3 22 and v 0, 22, 22 . v 10sin 60, 0, cos 60 53, 0, 5, or v 10sin 60, 0, cos 60 53, 0, 5 → 43. AB 0, 70, 115. F1 C10, 70, 115 → AC 60, 0, 115. F2 C260, 0, 115 → AD 45, 65, 115. F3 C3 45, 65, 115 F1 F2 F3 0, 0, 500. Thus 60C2 45C3 0 70C1 40. c u c u c 4 4 16 c 24 12 39. cu ci 2cj 3ck 65C3 0 115C1 115C2 115C3 500 Solving this system yields C1 Thus, F1 202.919 N F2 157.909 N F3 226.521 N 104 28 112 , C2 , C3 . 69 23 69 Section 11.2 44. (a) sin 18 L sin1 T θ θ 18 L 8 cos Vectors in Space L 8 cos sin1 18 L 8 L2 182 8L L 2 182 1041 T 18 in. L Domain: L > 18 (b) L T (c) 30 20 18.4 25 11.5 30 10 35 9.3 40 9.0 45 8.7 50 8.6 L = 18 T=8 0 100 0 Vertical asymptote: L 18 Horizontal asymptote: T 8 The minimum tension in each cable is 8 pounds and the minimum cable length is 18 inches. (d) 10 8 cos sin1 sin1 18 L ⇒ cos sin1 18L 108 45 18L cos 45 1 53 18 4 sin cos1 L 5 L 90 30 inches 3 45. True. cos 0 ⇒ 90 47. If u v < 0, then cos < 0 and the angle between u and v is obtuse, 180 > > 90. 46. True 48. Let v v1, v2, v3 and u u1, u2, u3. su Then tv tv1, tv2, tv3 su 1 tv u tv u1 tv1, u2 tv2, u3 tv3 u and su tv su1 tv1, su2 tv2, su3 tv3 u 1 tv v The endpoints of these three vectors are collinear, as indicated in the figure. So, the figure is a line. 49. (a) x t , y 3t 2 (b) x t 1, y 3t 1 2 3t 1 50. (a) x t, y 2 t (b) x t 1, y 2 t1 tv 1042 Chapter 11 Analytic Geometry in Three Dimensions 52. (a) x t, y 4t 3 51. (a) x t , y t 2 8 (b) x t 1, y 4t 13 (b) x t 1, y t 12 8 t 2 2t 7 Section 11.3 ■ The Cross Product of Two Vectors The cross product of two vectors u u1i u2 j u3k and v v1i v2 j v3k is given by u v u2v3 u3v2i u1v3 u3v1j u1v2 u2v1k i u1 v1 j u2 v2 k u3 . v3 ■ The cross product satisfies the following algebraic properties. (a) u v v u (b) u v w u v u w (c) cu v cu v u cv (d) u 0 0 u 0 (e) u u 0 (f) u v w u v w ■ The following geometric properties of the cross product are valid, where is the angle between the vectors u and v: (a) u v is orthogonal to both u and v. (b) u v u v sin (c) u v 0 if and only if u and v are scalar multiples. (d) u v is the area of the parallelogram having u and v as sides. ■ The absolute value of the triple scalar product is the volume of the parallelepiped having u, v, and w as sides. u u1 v w v1 w1 u2 v2 w2 u3 v3 w3 Vocabulary Check 1. cross product 2. 0 3. u v sin 4. triple scalar product i 1. j i 0 1 j 1 0 k 0 k 0 i 2. k j 0 0 2 2 2 −2 (−1, 0, 0) −1 1 (0, 0, − 1) −2 1 −2 −1 −−11 x −2 1 −1 k 1 i 0 z z −2 j 0 1 −1 2 y x −2 1 2 y Section 11.3 i 3. i k 1 0 j 0 0 k 0 j 1 The Cross Product of Two Vectors i 4. k i 0 1 2 2 −2 1 (0, 1, 0) 1 −1 2 −2 x j 2 1 2 y 2 y 2 i 5. u v 3 0 −1 −1 1 −1 −2 1 −2 −1 (0, −1, 0) x k 1 j 0 z z −2 j 0 0 k 5 3, 3, 3 1 −2 i 6. u v 6 4 u v u 3, 3, 3 3, 2, 5 0 j 8 1 k 3 29, 36, 38 4 u v v 3, 3, 3 0, 1, 1 0 i 7. u v 10 7 j 0 0 k 6 0, 42, 0 0 i 8. u v 5 2 u v u 0, 42, 0 10, 0, 6 0 j 5 2 k 11 7, 37, 20 3 u v v 0, 42, 0 7, 0, 0 0 i 9. u v 6 1 j 2 3 k 1 7, 13, 16 2 7i 13j 16k i 10. u v 1 1 2 11. u v j i 0 1 1 4 j 0 3 i 13. u v 1 0 i 14. u v 1 0 k 52 32, 32, 32 32 i 32 j 32 k 3 2 3 4 j 0 1 j 0 1 k 6 18, 6, 0 1 18i 6j i 12. u v 2 3 j 0 0 1 3 k 1 1, 2, 1 2 i 2j k k 2 0 2i 1 0j 1 0k 2i j k 1 k 0 2j 29 k 3 1043 1044 15. Chapter 11 Analytic Geometry in Three Dimensions i uv 3 0 j 1 1 k 0 i 3j 3k 1 i 16. u v 1 1 u u v 1 i 3j 3k v 19 19 i 17. u v 3 j 2 34 1 2 19 Unit vector 18. 1 71, 44, 25 7602 7602 7602 i j k 7 14 5 70i 175j 392k 14 28 15 189,189 21429 w 712 442 252 7602 uv u v 702 1752 3922 Consider the parallel vector 71, 44, 25 w. Unit vector Unit vector 71, 44, 25 19. i uv 1 1 j 1 1 k 1 2i 2j 1 u u 1 v 1 2i 2j v 22 2 2 2 i i 1 2 2 2 j 0 0 1 10, 25, 56 3429 429 1287 10, 25, 56 i uv 1 2 Unit vector j 2 1 k 2 6i 6j 3k 2 uv 1 6i 6j 3k u v 9 2 2 1 i j k 3 3 3 j j i 21. u v 0 1 20. uv 1 70, 175, 392 u v 21429 u v 36 36 9 9 u v 22 Unit vector 6 3 2 uv i j k u v 7 7 7 1, 3, 3 k 71 11 5 5 , , 20 5 4 1 10 k 0 6i 3j 2k. 3 u v 36 9 4 7 u v 19 Unit vector j 2 0 k 1 j 1 Area u v j 1 square unit i 22. u v 1 1 j 2 0 k 2 2i j 2k 1 Area u v 2i j 2k 4 1 4 3 square units i 23. u v 3 2 j 4 1 k 6 26i 3j 11k 5 Area u v 262 32 112 806 square units i 24. u v 2 1 j 3 2 Area u v 82 k 2 8, 10, 7 4 102 72 213 square units Section 11.3 j 2 2 1045 i 25. u v 2 0 The Cross Product of Two Vectors i 26. u v 4 5 k 3 12, 6, 4 3 j 3 0 k 2 3, 6, 15 1 Area u v 32 62 152 Area u v 122 62 42 270 330 square units 14 square units \ 27. (a) AB 3 2, 1 1, 2 4 1, 2, 2 is parallel to \ DC 0 1, 5 3, 6 8 1, 2, 2. \ \ AD 3, 4, 4 is parallel to BC 3, 4, 4. \ (b) AB \ AD \ Area AB \ (c) AB i 1 3 j 2 4 \ AD k 2 16, 2, 10 4 162 22 102 360 610 square units AD 1, 2, 2 3, 4, 4 0 \ ⇒ not a rectangle → 28. (a) AB 1, 2, 3 → CD 1, 2, 3 Opposites are parallel and same length. Thus ABCD form a parallelogram. i j k → → 2 3 10, 14, 6 (b) AB AC 1 5 4 1 → → Area AB AC 102 142 62 283 square units → → (c) AB AC 5 8 3 16 0 ⇒ not a rectangle. 29. u 1, 2, 3, v 3, 0, 0 uv i 1 3 j 2 0 30. u 2 1, 0 4, 2 3 1, 4, 1 k 3 0, 9, 6 0 Area 12 u v 1281 36 3213 square units v 2 1, 2 4, 0 3 3, 6, 3 i uv 1 3 Area j 4 6 k 1 6, 6, 18 3 1 1 2 2 u v 2 6 1 2 396 311 square 62 182 units 31. u 2 2, 2 3, 0 5 4, 5, 5 32. u 2 2, 4 4, 0 0 4, 8, 0 v 3 2, 0 3, 6 5 1, 3, 11 v 0 2, 0 4, 4 0 2, 4, 4 i u v 4 1 i u v 4 2 Area 1 2 u j 5 3 v k 5 40, 49, 17 11 1 2 2 40 124290 square units 492 172 Area j 8 4 1 2 u v 1 2 1280 k 0 32, 16, 0 4 1 2 2 32 162 85 square units 1046 Chapter 11 Analytic Geometry in Three Dimensions 2 33. u v w 4 0 3 4 0 3 0 4 2 34. u v w 0 0 0 3 0 1 36. u v w 2 0 4 0 3 216 316 30 16 2 35. u v w 1 4 3 1 3 1 0 1 1 w 0 1 Volume u 39. u v 1 1 0 0 1 112 1 1 38. u v w 0 3 v w 2 cubic units 2 0 0 Volume u v 2 2 2 Volume u v 0 2 5 v w 12 cubic units 4 w 0 0 w 9 9 cubic units 2 2 0 1 2 1 12 21 4 1(0 4 16 41. u 4, 0, 0, v 0, 2, 3, w 0, 5, 3 u v 3 3 3 1 40. u v w 1 2 0 26 20 12 Volume u 1 3 0 19 19 39 9 0 w 0 3 7 4 6 10 12 412 0 76 6 21 31 17 2 37. u v 1 0 6 1 w 16 cubic units → → → 42. AB 1, 1, 0, AC 1, 0, 2, AD 0, 1, 1 0 3 421 84 3 u v 1 w 1 0 1 0 1 0 2 12 11 3 1 Volume 3 cubic units Volume 84 84 cubic units 1 43. V cos 40 j sin 40 k 2 F pk i (a) V F 0 0 j 1 cos 40 2 0 1 p cos 40 i 2 p T V F cos 40 2 k 1 sin 40 2 p k j (b) p T 15 5.75 20 7.66 25 9.58 30 11.49 35 13.41 40 15.32 45 17.24 V 40° F Section 11.3 44. V 0.16cos 30 j sin 30 k j VF 0 k 0.16 cos 30 0.16 sin 30 0 2000 0 1047 k F 2000k i The Cross Product of Two Vectors 20000.16 cos 30 i 1603 i j 60° V F 30° T V F 1603 ft-lb 46. False. u v v 45. True. The cross product is not defined for two-dimensional vectors. u 47. If the magnitudes of two vectors are doubled, the magnitude of the cross product will be four times as large. i j 48. u v cos sin cos sin k 0 cos sin sin cos k 0 y u α2β Area of triangle formed by the unit vectors u and v is 1 1 2 baseheight 2 1 sin . The area is also given by 1 2 u v 1 2 α v cos sin sin cos β x Notice that cos sin sin cos is negative. Thus, sin sin cos cos sin . 1 52. cos 930 cos 210 55. tan 1 51. sin 690 sin 330 2 50. tan 300 3 49. cos 480 cos 120 2 3 2 53. sin 7 1 19 sin 6 6 2 15 7 tan 1 4 4 56. tan 54. cos 10 4 tan 3 3 3 0 7 8 56 3, 4: z 6 3 7 4 46 15, 0: z 6 15 7 0 90 58. 0, 8: z 6 57. z 6x 4y At 0, 5: z 60 45 20 At 0, 0: z 60 40 0 20 At 20 3 , 0: z 6 3 40 40 Minimum: 46 at 3, 4. At 6, 4: z 66 44 52 Maximum: Unbounded The maximum value of z, z 52, is found at 6, 4. The minimum value of z, z 0, is found at 0, 0. y y 20 18 16 14 10 8 8 6 4 2 (0, 5) (6, 4) 4 2 2 4 6 8 (0, 8) (3, 4) (15, 0) 2 4 6 ( 203 , 0) (0, 0) x 10 3 17 5 cos 6 6 2 10 12 14 16 x 1048 Chapter 11 Section 11.4 ■ ■ ■ ■ ■ Analytic Geometry in Three Dimensions Lines and Planes in Space The parametric equations of the line in space parallel to the vector a, b, c and passing through the point x1, y1, z1 are x x1 at, y y1 bt, z z1 ct. The standard equation of the plane in space containing the point x1, y1, z1 and having normal vector a, b, c is ax x1 b y y1 c z z1 0. You should be able to find the angle between two planes by calculating the angle between their normal vectors. You should be able to sketch a plane in space. The distance between a point Q and a plane having normal n is PQ n D projnPQ \ \ n where P is a point in the plane. Vocabulary Check \ PQ 1. direction, t 2. parametric equations 3. symmetric equations 4. normal 5. ax x1 b y y1 cz z1 0 2. (a) x x1 at 3 3t 1. x x1 at 0 t y y1 bt 0 2t y y1 bt 5 7t z z1 ct 0 3t z z1 ct 1 10t (a) Parametric equations: x t, y 2t, z 3t Parametric equations: x 3 3t, y 5 7t, z 1 10t (b) Symmetric equations: x y z 1 2 3 (b) Symmetric equations: 1 4 3. x x1 at 4 t, y y1 bt 1 t, z z1 ct 0 t 2 3 1 4 (a) Parametric equations: x 4 t, y 1 t, z t 2 3 Equivalently: x 4 3t, y 1 8t, z 6t (b) Symmetric equations: x4 y1 z 3 8 6 x3 y5 z1 3 7 10 Section 11.4 Lines and Planes in Space 1049 4. x x1 at 5 4t, y y1 bt 0 0t, z z1 ct 10 3t (a) Parametric equations: x 5 4t, y 0, z 10 3t (b) Symmetric equations: x 5 z 10 ,y0 4 3 5. x x1 at 2 2t, y y1 bt 3 3t, z z1 ct 5 t (a) Parametric equations: x 2 2t, y 3 3t, z 5 t (b) Symmetric equations: x2 y3 z5 2 3 7. (a) v 1 2, 4 0, 3 2 1, 4, 5 6. (a) v 3, 2, 1 Point: 2, 0, 2 x 1 3t, y 2t, z 1 t (b) Symmetric equations: x 2 t, y 4t, z 2 5t x1 y z1 3 2 1 (b) 8. (a) v 8, 5, 12 Point: 2, 3, 0 Parametric equations: x 2 8t, y 3 5t, z 12t (b) Symmetric equations: x2 y3 z 8 5 12 9. (a) v 1 3, 2 8, 16 15 4, 10, 1 Point: 3, 8, 15 x 3 4t, y 8 10t, z 15 t (b) x 3 y 8 z 15 4 10 1 10. 2, 3, 1, 1, 5, 3 (a) Let P 2, 3, 1, Q 1, 5, 3 \ \ V PQ 1 2, 5 3, 3 1 1, 8, 4 Direction numbers: a 1, b 8, c 4 Choose P as the initial point: x 2 t, y 3 8t, z 1 4t (b) x2 y3 z1 1 8 4 x2 y z2 1 4 5 1050 Chapter 11 Analytic Geometry in Three Dimensions 11. 3, 1, 2, 1, 1, 5 (a) v 1 3, 1 1, 5 2 4, 0, 3 Parametric: x 3 4t, y 1, z 2 3t (b) Since b 0, there are no symmetric equations. 12. 2, 1, 5, 2, 1, 3 (a) Let P 2, 1, 5, Q 2, 1, 3 \ \ V PQ 2 2, 1 1, 3 5 0, 2, 8 Direction numbers: a 0, b 2, c 8 Choose P as the initial point: x 2, y 1 2t, z 5 8t (b) Since the direction number a 0, no set of symmetric equations are possible. 1 1 1 13. , 2, , 1, , 0 2 2 2 12, 12 2, 0 21 32, 52, 21 (a) v 1 Direction numbers: 3, 5, 1 1 1 Parametric: x 3t, y 2 5t, z t 2 2 (b) Symmetric: 2x 1 y 2 2z 1 6 5 2 32, 5 32, 4 2 92, 132, 6 , or 9, 13, 12 14. (a) v 3 Point: 3, 5, 4 Parametric equations: x 3 9t, y 5 13t, z 4 12t (b) Symmetric equations: x3 y5 z4 9 13 12 z 15. 16. z 3 6 −3 2 −3 −2 −1 1 2 3 1 −6 (0, 2, 1) 2 −4 2 1 2 −6 4 (5, 1, 5) −2 4 3 6 y x 2 4 6 y x 17. ax x1 b y y1 cz z1 0 18. ax x0 b y y0 cz z0 0 1x 2 0 y 1 0z 2 0 0x 1 0 y 0 1z 3 0 x20 z30 19. 2x 5 1 y 6 2z 3 0 20. 0x 0 3 y 0 5z 0 0 2x y 2z 10 0 3y 5z 0 Section 11.4 Lines and Planes in Space 1051 21. n 1, 2, 1 ⇒ 1x 2 2 y 0 1z 0 0 x 2y z 2 0 23. u 1 0, 2 0, 3 0 1, 2, 3 22. n 1, 1,2 1x 0 1 y 0 2z 6 0 v 2 0, 3 0, 3 0 2, 3, 3 x y 2z 12 0 i 1 nuv 2 j 2 3 k 3 3, 9, 7 3 3x 0 9 y 0 7z 0 0 3x 9y 7z 0 3x 9y 7z 0 24. u 2, 6, 2, v 3, 3, 0 uv i 2 3 j 6 3 k 2 6, 6, 24 0 n 1, 1, 4 25. u 3 2, 4 3, 2 2 1, 1, 4 v 1 2, 1 3, 0 2 1, 4, 2 nuv i 1 1 j 1 4 k 4 18, 6, 3 2 Plane: 1x 4 1 y 1 4z 3 0 18x 2 6 y 3 3z 2 0 x y 4z 7 0 18x 6y 3z 24 0 6x 2y z 8 0 26. u 4, 0, 2, v 1, 2, 5 i uv 4 1 j 0 2 27. n j: 0x 2 1 y 5 0z 3 0 y50 k 2 4, 22, 8 5 n 2, 11, 4 Plane: 2x 1 11 y 1 4z 2 0 2x 11y 4z 5 0 28. 1 2, 1 2, 1 1 3, 1, 2 and 2, 3, 1 are parallel to plane. i n 3 2 j 1 3 k 2 7, 1, 11 1 7x 2 1 y 2 11z 1 0 7x y 11z 5 0 29. n1 5, 3, 1, n2 1, 4, 7 n1 n2 5 12 7 0; orthogonal 31. n1 2, 0, 1, n2 4, 1, 8 n1 n2 8 8 0; orthogonal 30. n1 3, 1, 4, n2 9, 3, 12 3n1 9, 3, 12 n2 ⇒ parallel planes 32. n1 1, 5, 1 n2 5, 25, 5 5n1 ⇒ parallel 1052 Chapter 11 Analytic Geometry in Three Dimensions 33. (a) n1 3, 4, 5, n2 1, 1, 1; normal vectors to planes cos n1 n2 6 n1 n2 503 6 150 (b) 3x 4y 5z 6 Equation 1 xyz2 Equation 2 ⇒ 60.67 3 times Equation 2 added to Equation 1 gives 7y 8z 0 8 y z. 7 8 1 Substituting back into Equation 2, x 2 y z 2 z z 2 z. 7 7 Letting t z7, we obtain x 2 t, y 8t, z 7t. 34. (a) n1 1, 3, 1, n2 2, 0, 5 cos n1 n2 n1 n2 7 1129 7 ⇒ 66.93 319 1 (b) 2x 5z 3 0 ⇒ x 5z 3 2 1 3 1 1 1 ⇒ y z Then 3y x z 2 5z 3 z 2 z 2 2 2 2 6 5 3 1 1 Let z t. Parametric equations: x t , y t , z t 2 2 2 6 1 3 or equivalently, let z 2t and you obtain x 5t , y t , z 2t. 2 6 35. (a) n1 1, 1, 1, n2 2, 5, 1; normal vectors to planes cos (b) n1 n2 2 n1 n2 330 xyz0 Equation 1 2x 5y z 1 Equation 2 2 90 ⇒ 77.83 2 times Equation 1 added to Equation 2 gives 7y z 1 y z1 . 7 Substituting back into Equation 1, x z y z Letting z t, x 6t 1 t1 ,y . 7 7 z 1 6z 1 1 6z 1. 7 7 7 7 Equivalently, let y t, z 7t 1 and x 6t 1. 36. The planes are parallel because n1 2, 4, 2 is a multiple of n2 3, 6, 3. The planes do not intersect. Section 11.4 38. 2x y 4z 4 37. x 2y 3z 6 6 5 4 3 (0, 0, 2) −5 z 6 5 4 3 (0, − 4, 0) 6 (0, 3, 0) 2 2 4 5 −4 −2 (2, 0, 0) y 5 6 −2 −1 6 (2, 0, 0) (0, 0, 5) 3 5 2 2 5 4 3 z −1 −2 2 −2 2 (0, 3, 0) 4 5 6 −6 −7 3 −2 6 y x (0, 5, 0) 6 4 6 x −2 −1 y 42. x 3z 6 z z −1 2 3 3 4 5 4 (0, 2, 0) 6 5 x 41. 3x 2y z 6 3 2 −2 −1 −1 (4, 0, 0) y 3 6 x 40. y z 5 6 −2 4 (6, 0, 0) −2 2 2 3 6 4 3 2 (0, 0, 1) −2 3 1053 39. x 2y 4 z z x Lines and Planes in Space (6, 0, 0) −4 (0, 0, −6) (0, 0, − 2) y −6 y x PQ n D \ 43. 44. P 4, 0, 0 on plane, Q 3, 2, 1, n 1, 1, 2 n \ PQ 1, 2, 1 P 1, 0, 0 on plane, Q 0, 0, 0, PQ n 1 D \ \ n 8, 4, 1, PQ 1, 0, 0 n 1, 0, 0 8, 4, 1 8 8 D 64 16 1 81 6 1 6 6 6 9 PQ n D \ 45. n P 2, 0, 0 on plane, Q 4, 2, 2, \ n 2, 1, 1, PQ 2, 2, 2 D 2, 2, 2 2, 1, 1 6 4 26 3 6 47. (a) z 0.81x 0.36y 0.2 46. P 6, 0, 0 on plane, Q 1, 2, 5, → PQ 7, 2, 5 , n 2, 3, 1 → PQ n 3 3 314 D n 14 14 14 (b) The approximations are very similar to the actual values of z. Year x y z (Actual) z (Model) 1999 6.2 7.3 7.8 7.85 2000 6.1 7.1 7.7 7.70 2001 5.9 7.0 7.4 7.50 2002 5.7 7.0 7.3 7.34 2003 5.6 6.9 7.2 7.22 (c) If the consumption of the two types of milk increases (or decreases), so does the consumption of the third type of milk. 1054 Chapter 11 Analytic Geometry in Three Dimensions 48. The plane containing P6, 0, 0, S0, 0, 0, T1, 1, 8 has normal vector 6, 0, 0 1, 1, 8 or n1 0, 8, 1. i 6 1 j 0 1 k 0 0, 48, 6 8 The plane containing P6, 0, 0, Q6, 6, 0, and R7, 7, 8 has normal vector 0, 6, 0 i 1, 1, 8 0 1 or n2 8, 0, 1. j 6 1 k 0 48, 0, 6, 8 The angle between two adjacent sides is given by cos n1 n2 n1 n2 1 6565 1 ⇒ 89.12. 65 49. False. They might be skew lines, such as: 50. True L1: x t, y 0, z 0 (x-axis) and L2: x 0, y t, z 1 51. The lines are parallel: 32 10, 18, 20 15, 27, 30 52. (a) Sphere: x 42 y 12 z 12 4 (b) Two planes parallel to given plane. Let Q x, y, z be a point on one of these planes, and pick P 0, 0, 10 on the given plane. By the distance formula, → PQ n x, y, z 10 4, 3, 1 2 26 n ± 226 4x 3y z 10 4x 3y z 10 ± 226 (Two planes parallel to given plane) 53. x2 y 2 102 100 54. 3 y ⇒ tan 1 ⇒ y x (line) 4 x r 3 cos 55. r2 3r cos x2 y2 3x 56. r 1 ⇒ 2r r cos 1 ⇒ 2x2 y2 x 1 2 cos ⇒ 2x2 y2 x 1 ⇒ 4x2 y2 x2 2x 1 ⇒ 3x2 4y2 2x 1 57. r2 49 r7 Review Exercises for Chapter 11 58. x2 y2 4x 0 1055 y5 59. r sin 5 r2 4r cos 0 r 5 csc r 4 cos 0 ⇒ r 4 cos 2x y 1 0 60. 2r cos r sin 1 r2 cos sin 1 r 1 sin 2 cos Review Exercises for Chapter 11 2. 1. (a) and (b) 5 (0, 0, 5) 4 z 3 3 (−3, 3, 0) 2 −3 −4 2 −3 1 −5 −4 (5, −1, 2) 1 y −2 2 3 4 x 1 3. 5, 4, 0 z 1 2 y −4 −3 −2 3 2 3 −2 1 2 3 −2 4 −3 1 −3 x −4 (2, 4, −3) −5 5. d 5 42 2 02 1 72 4. y-axis ⇒ x z 0 0, 7, 0 1 4 36 41 6. d 2 12 3 32 4 02 9 36 16 61 7. d1 3 02 2 32 0 22 9 25 4 38 d2 0 02 5 32 3 22 4 25 29 d3 0 32 5 22 3 02 9 49 9 67 d12 d22 38 29 67 d32 8. d1 4 02 3 02 2 42 16 9 4 29 d2 4 42 5 32 5 22 4 9 13 d3 4 02 5 02 5 42 16 25 1 42 d 12 d 22 d 32 42 9. Midpoint: 8 5 2 6 3 7 13 , , , 2, 5 2 2 2 2 10. Midpoint: 7 2 1, 1 2 1, 42 2 4, 0, 1 1056 Chapter 11 Analytic Geometry in Three Dimensions 10 2 8, 6 2 2, 122 6 1, 2, 9 11. Midpoint: 12. Midpoint: 52 7, 32 9, 1 2 5 6, 6, 2 13. x 22 y 32 z 52 1 14. x 32 y 22 z 42 16 15. Radius: 6 16. Radius 15 2 x 12 y 52 z 22 36 x 2 y 42 z 12 225 4 17. x2 4x 4 y2 6y 9 z2 4 4 9 x 22 y 32 z2 9 Center: 2, 3, 0 Radius: 3 18. x2 10x 25 y2 6y 9 z2 4z 4 34 25 9 4 x 52 y 32 z 22 4 Center: 5, 3, 2 Radius: 2 19. (a) xz-trace y 0: x2 z2 7, circle (b) yz-trace x 0: y 32 z2 16, circle z z (y − 3) 2 + z 2 = 16 x2 + z2 = 7 4 4 2 −2 −2 (0, 3, 0) 2 4 x 2 −4 −2 2 4 4 x 6 2 4 6 y y (0, 3, 0) 20. (a) xy-trace z 0: x 22 y 12 9 circle z (b) yz-trace x 0: 4 y 12 z2 9 y 12 z2 5 circle (x + 2) 2 + (y − 1) 2 = 9 z 4 (y − 1) 2 + z 2 = 5 4 2 (− 2, 1, 0) x 4 2 6 y x 6 y (−2, 1, 0) 21. Initial point: 2, 1, 4 \ 22. (a) PQ 3 2, 2 1, 3 2 5, 3, 1 Terminal point: 3, 3, 0 (b) PQ 35 (a) v 3 2, 3 1, 0 4 1, 4, 4 35 1 (c) Unit vector: 5, 3, 1 35 5, 3, 1 35 \ (b) v 12 42 42 33 (c) u v 1 4 4 , , v 33 33 33 Review Exercises for Chapter 11 1057 23. Initial point: 7, 4, 3 Terminal point: 3, 2, 10 (a) v 3 7, 2 4, 10 3 10, 6, 7 (b) v 102 62 72 185 10 6 7 v (c) u v 185, 185, 185 \ 24. (a) PQ 5 0, 8 3, 6 1 5, 11, 7 \ (b) PQ 195 195 1 5, 11, 7 5, 11, 7 (c) Unit vector: 195 195 25. u v 10 46 35 9 26. u v 82 45 22 0 27. u v 21 10 11 1 28. u v 21 13 22 5 29. Since u v 0, the angle is 90. 30. cos uv 12 5 2 1145 u v 15 1145 ⇒ 47.61 2, 4, 12 31. Since 23 39, 12, 21 26, 8, 14 , the vectors are parallel. 32. u v 8, 5, 8 33. First two points: u 3, 4, 1 34. First two points: 1, 5, 4 16 20 4 0 Orthogonal Last two points: v 0, 2, 6 Last two points: 2, 10, 8 Since u cv, the points are not collinear. Since, 2, 10, 8 21, 5, 4 , the 3 points are collinear. 35. Let a, b, and c be the three force vectors determined by A0, 10, 10, B4, 6, 10 and C4, 6, 10. a a 0, 10, 10 1 1 a 0, , 10 2 2 2 b b c c 4, 6, 10 2 3 5 b , , 152 38 38 38 4, 6, 10 2 3 5 c , , 152 38 38 38 Must have a b c 300k. Thus: 2 38 1 2 1 2 a a 3 38 5 38 —CONTINUED— b b b 2 38 3 38 5 38 c 0 c 0 c 300. 1058 Chapter 11 Analytic Geometry in Three Dimensions 35. —CONTINUED— From the first equation b c. From the second equation, From the third equation, 1 10 a 300 b. Thus, 2 38 6 10 b 300 b 38 38 Finally, a 2 1 6 a b. 2 38 16 7538 b 300 and b c 115.58. 4 38 ⇒ 63875 4 38 2252 2 159.10. 36. Let a, b, c be the three force vectors determined by A0, 10, 10, B4, 6, 10 and C4, 6, 10. 1 a a 0, 10, 10 102 a 0, , 1 2 2 238 , 338 , 538 b b 4, 6, 10 152 b 238 , 338, 538 c c 4, 6, 10 152 c We must have a b c 200k. Thus, 2 38 1 2 1 2 a a 3 38 5 38 b b b 2 38 3 38 5 38 c 0 c 0 c 200 Solving this system, a 106.1, b c 77.1. Thus, the tensions are 106.1, 77.1 and 77.1 pounds. i 37. u v 2 1 39. j 8 1 i j 2 u v 3 10 15 1 7602 71, 44, 25 i 40. u v 0 1 j 0 0 i 38. u v 10 5 k 5 71, 44, 25 2 u v 7602 Unit vector: k 2 10, 0, 10 1 k 4 4j ⇒ unit vector: j 0, 1, 0 12 j 15 3 k 5 15, 25, 105 0 Review Exercises for Chapter 11 41. First two points: 3, 2, 3 42. u 1, 0, 1 , v 1, 0, 1 opposite sides parallel and equal length. Last two points: 3, 2, 3 First and third points: 2, 2, 0 i 3 2 j 2 2 k 3 6, 6, 10 0 1059 Area 6, 6, 10 36 36 100 Adjacent sides: u 1, 0, 1 , w 0, 2, 0 i uw 1 0 j 0 2 k 1 2, 0, 2 0 Area u w 4 4 22 square units 172 243 square units 43. The parallelogram is determined by the three vectors with initial point 0, 0, 0. u 3, 0, 0 , v 2, 0, 5 , w 0, 5, 1 3 u v w 2 0 0 0 5 0 5 75 1 44. u 2, 0. 0 , v 0, 4, 0 , w 0, 0, 6 2 u v w 0 0 Volume u v 0 4 0 0 0 48 6 w 48 cubic units Volume 75 75 cubic units 45. v 3 1, 6 3, 1 5 4, 3, 6 , point: 1, 3, 5 (a) Parametric equations: x 1 4t, y 3 3t, z 5 6t (b) Symmetric equations: x1 y3 z5 4 3 6 47. Use 2v 4, 5, 2 , point: 0, 0, 0. 46. (a) v 5, 20, 3 (b) x 5t, y 10 20t, z 3 3t (a) Parametric equations: x 4t, y 5t, z 2t y 10 z 3 x 5 20 3 (b) Symmetric equations: 49. u 5, 0, 2 , v 2, 3, 8 48. (a) v 1, 1, 1 x 3 t, y 2 t, z 1 t (b) x y z 4 5 2 x3 y2 z1 or 1 1 1 x3y2z1 i uv 5 2 j 0 3 k 2 6, 36, 15 8 n 2, 12, 5 ax x0 b y y0 cz z0 0 2x 0 12 y 0 5z 0 0 2x 12y 5z 0 50. u 5, 5, 2 , v 3, 5, 2 i nuv 5 3 j 5 5 k 2 0, 16, 40 2 Plane: 0x 1 16 y 3 40z 4 0 2 y 3 5z 4 0 2y 5z 14 0 51. n k, normal vector Plane: 0x 5 0 y 3 1 z 2 0 z20 1060 Chapter 11 Analytic Geometry in Three Dimensions 52. n 1, 1, 2 , point: 0, 0, 6 53. 3x 2y 3z 6 1x 0 1 y 0 2z 6 0 z x y 2z 12 0 (0, 0, 2) (0, − 3, 0) 1 x y 2z 12 0 1 (2, 0, 0) 2 3 1 y −2 x 55. 2x 3z 6 54. 5x y 5z 5 56. 4y 3z 12 z z z −2 2 (0, − 5, 0) 4 −4 2 1 −4 −2 −2 (1, 0, 0) 3 2 4 4 1 (0, 0, − 1) 2 (0, 0, −2) 3 x 2 y −2 3 x 4 y (0, 3, 0) −1 1 −1 1 −1 2 1 (3, 0, 0) 1 −1 2 4 y −2 −3 (0, 0, −4) x \ 57. n 2, 20, 6 , P 0, 0, 1 in plane, Q 2, 3, 10, PQ 2, 3, 9 PQ n 2 D \ n 440 110 1 0.0953 110 110 → 58. D PQ n n → Q 1, 2, 3, P 2, 0, 0 on plane. PQ 1, 2, 3 , n 2, 1, 1 D 1, 2, 3 2, 1, 1 6 1 6 6 6 \ 59. n 1, 10, 3 , P 2, 0, 0 in plane, Q 0, 0, 0, PQ 2, 0, 0 PQ n D \ n 2 1 100 9 2 2110 110 0.191 110 55 110 → 60. D PQ n n → Q 0, 0, 0, P 0, 0, 12 on plane. PQ 0, 0, 12 , n 2, 3, 1 D 0, 0, 12 2, 3, 1 14 61. False. a b b a 12 614 7 14 62. True. See page 831. 63. u u 3, 2, 1 941 14 u2 3, 2, 1 Problem Solving for Chapter 11 i 64. u v 3 2 j 2 4 k 1 10, 11, 8 3 i vu 2 3 j 4 2 k 3 10, 11, 8 1 Thus, u v v 66. u v w u u. uw i 3 1 j 2 2 1, 2, 1 6 u v u w 11 5 6 i 1, 2, 1 3 1 u v 10, 11, 8 (Exercise 64) 65. u v w 3, 2, 1 j 2 2 k 1 4, 4, 4 1 k 1 6, 7, 4 2 u v u w 10, 11, 8 6, 7, 4 4, 4, 4 u v w Problem Solving for Chapter 11 1. (a) (c) w 1, 2, 1 a1, 1, 0 b0, 1, 1 z 1a 3 2 −3 1 −2 −1 2 −2 2ab −3 1b v u 1 2 3 3 y Hence, a b 1. (d) w 1, 2, 3 a1, 1, 0 b0, 1, 1 x (b) w au bv a1, 1, 0 b0, 1, 1 1a 0 a, a b, b ⇒ a b 0 2ab 3b Impossible 2. This set is a sphere: x x12 y y12 z z12 16 4. (a) u v 4, 7.5, 2 (b) u v 8.7321 (c) u 26 5.0990 (d) v 9.0139 3. Programs will vary. See online website. 1061 1062 Chapter 11 Analytic Geometry in Three Dimensions 5. The largest angle in a triangle is always opposite the longest side of the triangle. First, determine the lengths of uv the three sides. Then, once the largest angle has been identified, use the fact that cos , where u and v u v are defined to be the vectors that form . If u v 0, the angle is a right angle. If u v > 0, the angle is acute. If u v < 0, the angle is obtuse. (a) A: 1, 2, 0 B: 0, 0, 0 C: 2, 1, 0 dAB 5, dAC 10, dBC 5 Angle B is largest. \ \ BA 1, 2, 0, BC 2, 1, 0 \ BA BC 0 \ ⇒ The triangle is a right triangle. (b) A: 3, 0, 0 B: 0, 0, 0 C: 1, 2, 3 dAB 3, dAC 29, dBC 14 Angle B is largest. \ \ BA 3, 0, 0, BC 1, 2, 3 \ BA BC 3 \ < 0 ⇒ The triangle is an obtuse triangle. (c) A: 2, 3, 4 B: 0, 1, 2 C: 1, 2, 0 dAB 24, dAC 50, dBC 6 Angle B is largest. \ \ BA 2, 4, 2, BC 1, 1, 2 \ BA BC 10 \ < 0 ⇒ The triangle is an obtuse triangle. (d) A: 2, 7, 3 B: 1, 5, 8 C: 4, 6, 1 dAB 178, dAC 189, dBC 107 Angle B is largest. \ \ BA 3, 12, 5, BC 5, 1, 9 \ BA BC 48 \ ⇒ The triangle is an acute triangle. Problem Solving for Chapter 11 \ 6. PQ 1 0 0, 1 0, 0 4 0, 1, 4 \ PQ 2 \ 23 0, 21 0, 0 4 23, 12, 4 PQ 3 3 2 0, 3 1 1 0, 0 4 , , 4 2 2 2 \ \ \ Note that PQ 1 PQ 2 PQ 3 17. z Unit vectors: P(0, 0, 4) 1 u1 0, 1, 4 17 u2 1 17 ( Q3 − 3, 1,0 2 2 ) 23, 12 , 4 Q 1(0, − 1, 0) 3 1 1 u3 , , 4 2 2 17 y Q2 ( 3, 1,0 2 2 ) x The unit vectors u1, u2, u3 give the directions of the force in each leg. Since the legs are the same length, the total weight is distributed equally among the legs. So, F1 120 40 u1 0, 1, 4 3 17 F2 120 40 3 1 u , , 4 3 2 17 2 2 F3 3 1 120 40 u , , 4 3 3 17 2 2 7. Let A lie on the y-axis and the wall on the x-axis. Then, A 0, 10, 0, B 8, 0, 6, C 10, 0, 6 and \ \ AB 8, 10, 6, AC 10,10, 6. \ AB 82 102 6 2 102 \ AC 102 102 62 259 \ AB 420 84 F1 420 8, 10, 6 4, 5, 3 2 AB 102 \ \ F2 650 AC 650 650 10, 10, 6 5, 5, 3 59 AC 259 \ F F1 F2 4842 559650, 5284 559650, 3842 3650 59 185.526, 720.099, 432.059 F 860.0 lb 8. Note that cos uv . Therefore, u v u v sin u v 1 cos2 u v 1 u v2 u2v2 u v2 u2v2 u12 u22 u32v12 v22 v32 u1v1 u2v2 u3v32 u2v3 u3v22 u1v3 u3v12 u1v2 u2v12 u v sin u v Since u and v are orthogonal, 90 and sin 1. So, u v u v, u, v orthogonal. 1063 1064 Chapter 11 Analytic Geometry in Three Dimensions 9. u a1, b1, c1, v a2, b2, c2, w a3, b3, c3 v i w a2 a3 j b2 b3 k c2 b2c3 b3c2 i a2c3 a3c2 j a2b3 a3b2 k c3 i u v w a1 b2c3 b3c2 u v j b1 a3c2 a2c3 k c1 a2b3 a3b2 w b1a2b3 a3b2 c1a3c2 a2c3 i a1a2b3 a3b2 c1b2c3 b3c2 j a1a3c2 a2c3 b1b2c3 b3c2 k a2a1a3 b1b3 c1c3 a3a1a2 b1b2 c1c2 i b2a1a3 b1b3 c1c3 b3a1a2 b1b2 c1c2 j c2a1a3 b1b3 c1c3 c3a1a2 b1b2 c1c2 k 10. u wv u vw u1 v1 w1 u2 v2 w2 u3 v v3 u1 2 w2 w3 u1 v2 w2 u1i v3 v u2 1 w3 w1 v3 v i i u2 1 w3 w1 v2 w2 11. j v2 w2 v2 w2 v2 w2 v v2 k k w2 v3 j u3k w3 v3 v i 1 w3 w1 k v3 u v w3 v3w v3 v j j u3 1 w3 w1 v3 v i u2 j 1 w3 w1 u1i u2j u3k i u v1 w1 v3 v u3 1 w3 w1 v1 w1 v2 k w2 v3 v j 1 w3 w1 v2 k w2 w w area of base and projv wu height of parallelepiped Therefore, the volume is V heightarea of base projv wu v w u v w v v w w u u v w w . v || proj v 3 w u || (a) O 0, 0, 0 12. A 18 cos 30, 18 sin 30, 0 93, 9, 0 A OA 93, 9, 0 \ 18 in. θ 30° O F \ M OA \ F OA F sin 1440 932 92 02 60 sin 1080 sin 0 180 0 —CONTINUED— Problem Solving for Chapter 11 1065 12. — CONTINUED— 22 540 \ (b) M 1080 sin45 1080 2 763.7 in-lb \ (c) M 1080 sin has its maximum value at 90. In order to generate the maximum torque, the force should be applied in a direction perpendicular to the wrench handle. \ 13. (a) In inches: AB 15j 12k 400 5 In feet: AB j k 4 \ 0 F 200cos j sin k \ (b) AB i j F 0 AB 5 4 1 200 cos 0 \ k 200 sin −300 250 sin 200 cos i F 250 sin 200 cos 25 10 sin 8 cos \ (c) When 30: AB F 25 10 180 12 8 23 255 43 298.2 (d) From the graph we see that the maximum value occurs when 51.34. \ (e) From the graph we see that the zero occurs when 141.34, the angle making AB parallel to F. 14. The area of the triangle is one-half of the area of any of the 3 parallelograms having the following adjacent sides: b and c, b and a, c and a B So, b c a c a Area 2 2 a c b 2 A C b c a c a b b b c sin A a c sin B a b sin C Divide by a b c: sin A sin B sin C a b c 15. First insect: x 6 t, y 8 t, z 3 t Second insect: x 1 t, y 2 t, z 2t (a) When t 0 the first insect is located at 6, 8, 3 and the second insect is located at 1, 2, 0. d 1 62 2 82 0 32 70 inches 20 (b) d 1 t 6 t2 2 t 8 t2 2t 3 t2 52 2t 62 t 32 −1 5t 2 30t 70 11 0 t 0 1 2 3 4 5 6 7 8 9 10 d 70 45 30 5 30 45 70 105 150 205 270 —CONTINUED— 1066 Chapter 11 Analytic Geometry in Three Dimensions 15. —CONTINUED— (c) The distance between the two insects appears to lessen in the first 3 seconds, but then begins to increase with time. (d) When t 3, the insects get within 5 inches of each other. 16. (a) x 2 4t, y 3, z 1 t ⇒ direction vector u 4, 0, 1 Let P be the point on the line with t 0: P 2 4 \ 0, 3, 1 0 2, 3, 1, Q 1, 5, 2 PQ 1 2, 5 3, 2 1 3, 2, 3 \ PQ i u 3 4 j 2 0 k 2 3 0 1 3 3 i 1 4 3 3 j 1 4 2 k 0 2i 9j 8k 2, 9, 8 \ PQ u 22 92 82 149 u 42 02 12 17 \ PQ u 149 2533 D 2.9605 u 17 17 (b) x 2t, y 3 t, z 2 2t ⇒ direction vector u 2, 1, 2 Let P be the point on the line with t 0: P 2 \ 0, 3 0, 2 2 0 0, 3, 2, Q 1, 2, 4 PQ 1 0, 2 3, 4 2 1, 1, 2 \ PQ i u 1 2 j 1 1 k 1 2 1 2 2 1 i 2 2 2 1 j 2 2 1 k 1 0i 2j k 0, 2, 1 \ PQ u 02 22 12 5 u 22 12 22 9 3 \ PQ u 5 0.7454 D u 3 17. (a) u 0, 1, 1 direction vector of line determined by P1 and P2 z 6 5 4 3 P 2 \ D P1Q u 2, 0, 1 0, 1, 1 u 2 P1 1, 2, 2 3 32 2 2 2 (b) The shortest distance to the line segment is P1Q 2, 0, 1 5. 4 x 3 2 1 Q 2 3 4 y Problem Solving for Chapter 11 1 1 18. (a) x t 3, y t 1, z 2t 1 ⇒ direction vector u 1, , 2 2 2 Let Q 4, 3, s. Let P be the point on the line corresponding to t 0: P 3, 1, 1 \ PQ 4 3, 3 1, s 1 1, 2, s 1 \ PQ u i j 1 2 1 2 1 \ u s1 2 s1 1 2 2 2 i 1 1 7s 5 7s 5 i s 3j k , s 3, 2 2 2 2 PQ k u 7s 2 1 12 2 2 2 s 32 22 5 2 2 1 s1 j 2 1 5s2 10s 110 2 21 2 \ D PQ u 5s2 10s 110 105s2 210s 2310 u 21 21 (b) 10 215 15 210 Minimum distance is D 2.23607 at s 1. (c) D 105s2 210s 2310 21 As s approaches very large (very positive) or very small (very negative) values, the expression under the radical is dominated by the term 105s 2: 105s 2 210s 2310 105s2, s “large” So, at large values of s , D 105s2 21 ± 105 Asymptotes: D ± 21 s. 105 21 s 1 2 1 k 2 1067 1068 Chapter 11 Chapter 11 Analytic Geometry in Three Dimensions Practice Test 1. Find the lengths of the sides of the triangle with vertices 0, 0, 0, 1, 2, 4, and 0, 2, 1. Show that the triangle is a right triangle. 2. Find the standard form of the equation of a sphere having center 0, 4, 1 and radius 5. 3. Find the center and radius of the sphere x2 y2 z2 2x 4z 11 0. 4. Find the vector u 3v given u 1, 0, 1 and v 4, 3, 6. 5. Find the length of 12v if v 2, 4, 6. 6. Find the dot product of u 2, 1, 3 and v 1, 1, 2. 7. Determine whether u 1, 1, 1 and v 3, 3, 3 are orthogonal, parallel, or neither. 8. Find the cross product of u 1, 0, 2 and v 1, 1, 3. What is v u? 9. Use the triple scalar product to find the volume of the parallelepiped having adjacent edges u 1, 1, 1, v 0, 1, 1, and w 1, 0, 4. 10. Find a set of parametric equations for the line through the points 0, 3, 3 and 2, 3, 4. 11. Find an equation of the plane passing through 1, 2, 3 and perpendicular to the vector n 1, 1, 0. 12. Find an equation of the plane passing through the three points A 0, 0, 0, B 1, 1, 1, and C 1, 2, 3. 13. Determine whether the planes x y z 12 and 3x 4y z 9 are parallel, orthogonal or neither. 14. Find the distance between the point 1, 1, 1 and the plane x 2y z 6.
© Copyright 2026 Paperzz