Nonhomogeneous Linear Differential Equations with Constant Coefficients - (3.4) Method of Undetermined Coefficients Consider an nth-order nonhomogeneous linear differential equation with constant coefficients: Ly gx where Ly a n y n a n"1 y n"1 . . . a 1 y U a 0 y. We know the general solution of this differential equation is: y yh yp where y h C 1 y 1 . . . C n y n is the general solution of Ly 0 and y p is a particular solution of Ly gx , respectively. We know how to find y h from Section 3.3. In this section, we will study a method called “The Method of Undetermined Coefficients” to find y p . Notice that if gx g 1 x g 2 x and y p 1 and y p 2 are particular solutions of Ly g 1 x and Ly g 2 x , respectively, then y p y p 1 y p 2 is a particular solution of Ly gx . So if gx is a sum of k functions g i x U s, we may solve equations Ly g i x for i 1, T , k one by one. The Method of Undetermined Coefficients: Let y h C 1 y 1 . . . C n y n be the general solution of the differential equation: Ly 0. Find y p , a particular solution of the differential equation: Ly gx . Observe that the following are possible types of functions for y Ui s : type of gx polynomial examples 1 x, x 2 " 1 3 e" 1 2 x3 exponential function e 2x , 2x sine and cosine cos=x , sin2x combinations of above functions xe 2x , x sin3x , x 2 " 1 e x cos2x This method is designed to solve y p when gx is one of above functions. 1. The type of gx is different from any of y Ui s. The solution y p can be chosen as follows. type of gx choice of y p b k x k b k"1 x k"1 . . . b 1 x b 0 A k x k A k"1 x k"1 . . . A 1 x A 0 e ax Ae ax cos*x or sin*x )x )x A cos*x B sin*x e cos*x or e sin*x Ae )x cos*x Be )x sin*x b k x k b k"1 x k"1 . . . b 1 x b 0 e )x A k x k A k"1 x k"1 . . . A 1 x A 0 e )x b k x k b k"1 x k"1 . . . b 1 x b 0 sin*x or A k x k A k"1 x k"1 . . . A 1 x A 0 sin*x b k x k b k"1 x k"1 . . . b 1 x b 0 cos*x B k x k B k"1 x k"1 . . . B 1 x B 0 cos*x 2. The type of gx is the same as one of y Ui s. The solution y p x h y p where y p is chosen from above table and the positive integer h is chosen so that x h y p is different from any of y Ui s. 1 Constants A Ui s and B Ui s are determined so that y p is a particular solution. Example Let y h be the general solution of Ly 0 where y h C 1 e 2x C 2 xe 2x C 3 cos2x C 4 sin2x C 5 e "2x C 6 e "x sin=x C 7 e "x cos=x C 8 . Give the form of a particular solution y p of the differential equation: Ly 2 x 2 e 3x 4e 2x cos=x " 2x sin4x " 2e x cos2x " cos2x . Consider gx g 1 x g 2 x g 3 x g 4 x g 5 x g 6 x g 7 x . Choose y p i : i g i x y pi 1 2 x2 A 2 x 2 A 1 x A 0 x 2 e 3x Be 3x 3 4e 2x Ce 2x x 2 4 cos=x D 1 cos=x D 2 sin=x 5 "2x sin4x E 1 x E 2 sin4x E 3 x E 4 cos4x 6 "2e x cos2x F 1 e x cos2x F 2 e x sin2x 7 " cos2x G 1 cos2x G 2 sin2x x y p y p 1 . . . y P 7 A 2 x 2 A 1 x A 0 x Be 3x Ce 2x x 2 D 1 cos=x D 2 sin=x E 1 x E 2 sin4x E 3 x E 4 cos4x F 1 e x cos2x F 2 e x sin2x G 1 cos2x G 2 sin2x x Example Solve y UU " 2y U " 3y 4x " 5 6xe 2x . 1. Solve y h from the equation: y UU " 2y U " 3y 0. Pm m 2 " 2m " 3 m " 3 m 1 0, m 3, m "1 The general solution of Ly 0 : y h c 1 e 3x c 2 e "x 2. Solve y p 1 from y UU " 2y U " 3y 4x " 5. Let y p 1 Ax B. Then y Up 1 A, y UUp 1 0. y UU " 2y U " 3y 4x " 5 « 0 " 2A " 3Ax B 4x " 5 « "3Ax "2A " 3B 4x " 5 coefficients of x : "3A 4, A " 43 constants: " 2A " 3B "5, B 1 3 5"2 " 4 3 23 9 , y p 1 " 4 x 23 9 3 3. Solve y p 2 from y UU " 2y U " 3y 6xe 2x . Let y p 2 Ax B e 2x . Then y Up 2 Ae 2x 2Ax B e 2x 2Ax A 2B e 2x , y UUp 2 2A e 2x 22Ax A 2B e 2x 4Ax 4A 4B e 2x y UU " 2y U " 3y 6xe 2x « 4Ax 4A 4B e 2x " 22Ax A 2B e 2x " 3Ax B e 2x 6xe 2x Dropping e 2x from both sides of the equation, we have polynomials on both sides of the equation: 4A " 4A " 3A x 4A 4B " 2A " 2B " 3B 6x « "3Ax 2A " B 6x 2 coefficients of x : "3A 6, A "2 constants: 2A " B 0, B 2A "4 , y p 2 "2x " 4 e 2x "2x 2 e 2x 4. the general solution of Ly gx : y y h y p 1 y p 2 c 1 e 3x c 2 e "x " 4 x 23 " 2x 2 e 2x 9 3 Example Solve y UUU " 5y UU 4y U 8e x 4x. 1. Solve y h from y UUU " 5y UU 4y U 0. Pm m 3 " 5m 2 4m mm " 4 m " 1 0, m 0, m 1, m 4. The general solution of Ly 0 : y h c 1 c 2 e x c 2 e 4x . 2. Solve y p 1 from y UUU " 5y UU 4y U 8e x . Let y p 1 Ae x x Axe x . Then y U Ae x xe x A1 x e x , y UU Ae x 1 x e x A2 x e x y UUU Ae x 2 x e x A3 x e x y UUU " 5y UU 4y U 8e x « A3 x e x " 5A2 x e x 4A1 x e x 8e x Drop the factor e x from both sides of the equation, we have polynomials in x on both sides of the equation: A " 5A 4A x 3A " 10A 4A 8 « "3A 8, A " 8 , y p 1 " 8 xe x 3 3 UUU UU U 3. Solve y p 2 from y " 5y 4y 4x Let y p 2 Ax B x Ax 2 Bx. Then y Up 2 2Ax B, y UUp 2 2A, y UUU p 3 0. y UUU " 5y UU 4y U 4x « 0 " 52A 42Ax B 4x « 8Ax "10A 4B 4x coefficients of x : 8A 4, A constants: " 10A 4B 0, B 1 2 10 4 A 5 4 , y p2 1 x 2 5 x 2 4 4. The general solution of Ly gx : y y c y p 1 y p 2 c 1 c 2 e x c 2 e 4x " 8 xe x 1 x 2 5 x 3 2 4 UU Example Solve y 9y 2 cos2x 0 if 0 t x = 2 , y0 0, y U 0 0. = if x u 2 1. Solve y h from y UU 9y 0. Pm m 2 9 0, m oi3. The general solution of Ly 0 : y h c 1 cos3x c 2 sin3x 2. Solve y p from y UU 9y 2 cos2x . Let y p A cos2x B sin2x . Then y Up "2A sin2x 2B cos2x , y UUp 2 "4A cos2x " 4B sin2x y UU 9y 2 cos2x « "4A cos2x " 4B sin2x 9A cos2x B sin2x 2 cos2x 3 "4A 9A cos2x "4B 9B sin2x 2 cos2x coefficients of cos2x : 5A 2, A 2 5 coefficients of sin2x : 5B 0, B 0 , y p 2 cos2x 5 3. The general solution of Ly gx : c 1 cos3x c 2 sin3x y yh yp 4. Solve the initial value problem: For 0 t x = , 2 c 3 cos3x c 4 sin3x 2 5 cos2x 0 t x = 2 = xu 2 y U "3c 1 sin3x 3c 2 cos3x " 4 sin2x 5 y0 c 1 2 5 0, c 1 " 25 , y U 0 3c 2 0, c 2 0 y " 2 cos3x 2 cos2x . 5 5 For x u = , the initial conditions are: 2 y 6 sin3x " 4 sin2x , 5 5 U y = 2 " 25 yU = 2 " 65 Then y U "3c 3 sin3x 3c 4 cos3x y = 2 yU = 2 0 " c 4 " 25 , c 4 6 5 3c 3 " , c 3 " 2 5 2 5 , y " 2 cos3x 2 sin3x 5 5 The solution of the initial value problem: y yh yp 4 " 25 cos3x 2 5 " 25 cos3x 2 5 cos2x 0 t x = 2 = sin3x x u 2 2 0.4 1 0.2 0 0.5 1 1.5 x 2 2.5 3 0 2 4 x -0.2 -1 -0.4 -2 fx 5 2 cos2x if 0 t x 0 if x u = 2 = 2 y 6 8 10
© Copyright 2026 Paperzz