International Journal of Mathematical Archive-4(6), 2013, 148-150 Available online through www.ijma.info ISSN 2229 – 5046 A Remark on Arithmetic Function χ ∗ Bhabesh Das* Department of Mathematics, Gauhati University, Guwahati-781014, Assam, India (Received on: 19-05-13; Revised & Accepted on: 10-06-13) ABSTRACT In this paper we introduce a new function χ , ∗ arithmetic which is χ (n) = n + (−1) d1 + (−1) d 2 + (−1) d3 + ...... + (−1) d k + 1 , where d1 , d 2 , d3 ,......d k positive integer n . Using this arithmetic function we get some relations on σ , ϕ and χ -function. ∗ d1 d3 d2 dk defined as are divisors of the Mathematics Subject Classification: 11A25, 11A41 Keywords: Arithmetic function, divisor function, Euler’s totient function, χ -function. INTRODUCTION An arithmetic function or number theoretic function f is one whose domain is the set of positive integers and whose range is a subset of the complex numbers. Arithmetic function f is said to be multiplicative, if f ( mn) = f ( m) f ( n) for g.c.d ( m, n) = 1 . Euler’s totient function is defined as= ϕ ( n) n 1 ∏ (1 − p ) , where p runs through all prime divisors of n .Let n be a natural number and d1 , d 2 , d 3 ,......d k be divisors of n such that d1 > d 2 > d 3 > ...... > d k . σ is defined as σ (n) =n + d1 + d 2 + d3 + ...... + d k + 1 . K. Atanassov in k k +1 [1] introduced a new arithmetic function χ , which is defined as χ ( n) = n − d1 + d 2 − d 3 + ...... + (−1) d k + (−1) . For any prime p , χ ( p )= p − 1 . In [1] author gave some results using this arithmetic function. Well known Divisor arithmetic function MAIN RESULTS Here we shall introduce a new arithmetic function that is some how dual of χ . It will have the form χ ∗ (n) = n + (−1) d d1 + (−1) d d 2 + (−1) d d3 + ...... + (−1) d d k + 1 .It 1 3 2 k is clear that for any prime p , χ ( p )= p + 1 and χ (1) = 0 . ∗ ∗ In following table the values of functions χ , ϕ and ∗ σ for the first 50 natural numbers are given. Corresponding author: Bhabesh Das* Department of Mathematics, Gauhati University, Guwahati-781014, Assam, India International Journal of Mathematical Archive- 4(6), June – 2013 148 Bhabesh Das*/A Remark on Arithmetic Function χ / IJMA- 4(6), June-2013. ∗ n χ ∗ ( n) ϕ ( n) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 0 3 4 7 6 6 8 15 7 8 12 22 14 10 8 31 18 1 1 2 2 4 2 6 4 6 4 10 4 12 6 8 8 16 σ ( n) 1 3 4 7 6 12 8 15 13 18 12 28 14 24 24 31 18 n χ ∗ ( n) ϕ ( n) σ ( n) n χ ∗ ( n) ϕ ( n) σ ( n) 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 15 20 32 12 14 24 54 21 16 16 42 30 26 32 63 20 20 6 18 8 12 10 22 8 20 12 18 12 28 8 30 16 20 16 39 20 42 32 36 24 60 31 42 40 56 30 72 32 63 48 54 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 24 67 38 22 24 80 42 34 44 62 14 26 48 118 43 33 24 12 36 18 24 16 40 12 42 20 24 22 46 16 42 20 48 91 38 60 56 90 42 96 44 84 78 72 48 124 57 93 It is easy to prove the followings Proposition 1: For any natural number n , Proposition 2: = If n χ ∗ (n) ≤ σ (n). 2a , a ∈ , then χ ∗ (n) = σ (n) . Proposition 3: If n = 2 p , where p is an odd prime, then ∗ χ= ( n) σ ( n) +2 3 Proposition 4: If n = pq , where p and q are distinct odd primes, then ϕ ( n) = Proof: If n = pq , then χ ∗ ( n) . χ ∗ ( pq)= pq + (−1) p p + (−1) q q + 1 = pq − p − q + 1 =( p − 1)(q − 1) = ϕ ( n) Proposition 5: For any odd positive integer n , χ ∗ ( n) + σ ( n) = 2n + 2 . Proposition 6: If n = 2 p , where p is an odd prime and a ∈ , then a ∗ χ= ( n) σ ( p a ) + 2 Proof: If n = 2 p , then a χ ∗ ( n= ) (2 p a + 2 p a −1 + 2 p a − 2 + .... + 2 p ) − ( p a + p a −1 + p a − 2 + .... + p ) + 2 + 1 = 2( p a + p a −1 + p a − 2 + .... + p + 1) − ( p a + p a −1 + p a − 2 + .... + p ) + 1 = 2σ ( p a ) − (σ ( p a ) − 1) + 1 = σ ( pa ) + 2 Proposition 7: Any positive integer n = 2m, where m = p1 1 p2 2 ... pr r and a a a pi are distinct odd primes, then ∗ χ= ( n) σ ( m) + 2 . Proposition 8: If n = pq , where p and q are two distinct odd primes such that p > q , then χ ∗ ( n) = © 2013, IJMA. All Rights Reserved p −1 χ ( n) . p +1 149 Bhabesh Das*/A Remark on Arithmetic Function χ / IJMA- 4(6), June-2013. ∗ Proof: If n = pq , then χ (n) = pq − p + q − 1= ( p + 1)(q − 1) χ ∗ ( pq ) = ( p − 1)(q − 1) = p −1 p −1 ( p + 1)(q − 1) = χ ( n) p +1 p +1 REFERENCES [1] Krassimir Atanassov, A remark on an arithmetic function. Part 2, NNTDM 15 (2009) 3, 21-22, CLBME - Bulg. Academy of Sci., P.O. Box 12, Sofia-1113, Bulgaria. [2] W.SIERPINSKI, Elementary theory of numbers, Warsawa, 1964. [3] Nagell T., Introduction to number theory, John Wiley & Sons, New York, 1950. Source of support: Nil, Conflict of interest: None Declared © 2013, IJMA. All Rights Reserved 150
© Copyright 2026 Paperzz