Inverse z-Transform Partial Fraction expansion Examples: Using partial fraction methods, find the inverse z-transform u An example for Simple Real Poles 6 − 9z X (z ) = X (z) = 1 − 2.5z −1 −1 +z 6 − 9z −1 −1 −1 A2 = (1 − 2z −1 ) X( z) z −1 =2 z −1 =0.5 A1 = (1 − 0.5 z )(1 − 2z ) A1 = (1 − 0.5 z − 1) X (z) X (z ) = −2 −1 (1 − 0.5 z ) 6 − 9z − 1 = −1 (1 − 2z ) z −1 =2 + A2 −1 (1 − 2z ) = 6 − 9(2) 1 − 2(2) 6 − 9 z −1 = −1 (1 − 0.5 z ) 4 2 + −1 (1 − 0.5z ) (1 − 2 z −1) z − 1 =0.5 = = 4, 6 − 9(0.5) 1 − 0.5(0.5) = 2 ROC z > 2 x(n) = 4(0.5)n + 2(2)n u(n ) v An example for Multiple Real Poles F (z ) = F1 (z ) = 1 1 − 0.7z −1 + 0.16 z d dz z −1 = 1− 0.6z −1 9 −1 (1 − 0.3 z ) = − A1 A2 A3 z− 1 + + (1− 0.3z −1) (1− 0.2z −1) (1− 0.2z −1)2 −1 (1 − 0.2z ) z = −1 2 3 z −3 1 = 1 z −1 = 5 (1 − 0.2z − 1)2 zF (z) (1− 0.3z −1) 2 z −1 = 5 F (z ) = = (1 − 0.3 z −1 )(1 − 0.2z −1 )2 A3 = (1 − 0.2z − 1) zF(z ) A2 = − 0.012 z 1 A1 = (1 − 0.3z −1)F( z) A2 = −2 = −1 1− 0.6(5) 3 z = 1 = = = 1 3 9 (1 − 0.2 ) 2 0.2 (1 − 0.3 z −1) z − 1 = 5 1 − 0.3(5) =5 (1 − 0.3(5)) 2 1 = = −0.4 , z (1 − 0.3z −1 ) − z(0.3) z −2 = − 1 − 1 dz (1 − 0.3 z ) z = 5 z −1 = 5 (1− 0.3 z − 1) 2 d −8 8 −1 (1 − 0.2z ) − 0.4z −1 −1 2 (1 − 0.2 z ) f (n) = 9(0.3)n − 8(0.3)n + 2n (0.3)n u(n ) Z-Transform with MatLab-1 w An example for Multiple Real Poles F (z) = p1 = − b − b 2 − 4ac 2a = 1 + 2z −1 + z −2 1 − z −1 + 0.3561z −2 o − 1 − 12 − 4(0.3561) = 0.5 + j 0.3257 = 0.5967e j 33.08 2 2 o −b + b 2 − 4ac −1 + 1 − 4(0.3561) = = 0.5 − j 0.3257 = 0.5967e− j 33.08 2a 2 1 + 2z −1 + z −2 F (z ) = (1 − p1z −1 )(1 − p2 z −1 ) p2 = F (z ) = 2.8082 − F1 (z ) = A1 = 1.8082 − 4.8082z −1 (1 − p1z −1 )(1 − p2 z − 1) 1.8082 − 4.8082z −1 A1 A2 = + −1 −1 −1 (1 − p1z )(1 − p2 z ) (1 − p1z ) (1 − p2 z −1) 1.8082 − 4.8082z (1 − (0.5 − j 0.3257) z−1) 1.8082 − 4.8082z −1 A2 = (1 − (0.5 + j0.3257)z −1) z − 1= 1 0.5 + j 0.3257 = 4.8082 o 0.5 − j 0.3257 = 0.904 − j5.993 = 6.06e − j 98.58 (0.5 + j 0.3257) 1− (0.5 − j 0.3257) 1.8082 − z−1= 1 0.5 − j 0.3257 o F (z ) = 2.8082 + 4.8082 o 0.5 + j 0.3257 = + 0.904 + j 5.993 = 6.06e+ j 98.58 (0.5 − j 0.3257) 1− (0.5 + j 0.3257) 1.8082 − −1 6.06e − j 98.58 − o = 6.06e j 98.58 o o 1 − 0.5967e j 33.08 z − 1 1 − 0.5967e − j33.08 z −1 o o f (n) = 2.8082δ (n ) + 6.06e − j 98.58 (0.5967)n e j 33.08n + 6.06e j 98.58 (0.5967)n e − j 33.08n u(n ) o o f (n) = 2.8082δ (n ) + (6.06)(0.5967)n e j 33.08n− 98.58 + 6.06(0.5967)n e − j (33.08n−98.58 ) u (n ) f (n) = 2.8082δ (n ) + 12.12(0.5967)n cos(33.08 n − 98.58o ) u (n) Z-Transform with MatLab-2 Z-Transform in Matlab Z-transform is defined as ∞ X ( z ) = ∑ x( n) z − n n =0 or X ( z ) = Z [ x( n) ] The inverse z-transform is denoted by x(n ) = Z − 1 [ X (z )] MatLab Symbolic Toolbox gives the z-transform of a function Example: 1 u (n ) 4n x (n ) = X ( z) = 2z 2z −1 >> syms z n >> ztrans(1/4^n) >> syms z n >> iztrans(2*z/(2*z-1)) ans = ans = 4*z/(4*z-1) (1/2)^n Example: X (z ) = 6 − 9z 1 − 2.5z −1 −1 +z −2 >> syms z n >> iztrans((6-9*z^-1)/(1-2.5*z^-1+z^-2)) >> syms z n >> ztrans (2*2^n+4*(1/2)^n) ns = ans = 2*2^n+4*(1/2)^n z/(1/2*z-1)+8*z/(2*z-1) Z-Transform with MatLab-3 Power series expansion with the MatLab The deconv function is used to perform the long division required in power series method. For given z-transform X(z) X (z ) = b0 + b1z a +az 0 −1 + ... + b z −n + ... + a z −m n −1 m 1 The matLab command is >>[q,r]=deconv(b,a) Example: 1 + 2z X (z ) = 1− z −1 −1 +z −2 + 0.3561z −2 >> b=[1 2 1]; >> a=[1 –1 0.356]; >> n=5; >> b=[b zeros(1,n-1)]; >> [x,r]=deconv(b,a); >> disp(x) 1.0000 3.000 3.6439 2.5756 1.2780 Partial fraction expansion with MatLab The residuez function is used to find the partial fraction coefficients and poles of the z-transform For given z-transform X(z) X (z ) = b0 + b1z a +az 0 X (z ) = 1 r0 1− p1z − 1 −1 + ... + b z −n + ... + a z −m n −1 m + ... + rn 1− pn z −1 +k +k z 1 −1 2 + ... + k z − ( m − n) m − n− 1 The matLab command is >> [r,p,k]=residues(b,a) Example: X (z ) = 1 + 2z 1− z −1 −1 +z −2 + 0.3561z −2 >> [r,p,k]=residuez([1,2,1],[1, -1,0.3561]) r= -0.9041 - 5.9928i -0.9041 + 5.9928i p= -0.5000 – 0.3257i -0.5000 + 0.3257i k=2.8082 Z-Transform with MatLab-4 Pole-zero Diagram zplane command compute and display of the pole-zero diagram of z-function The command is >> zplane(b,a) To display the pole value, use root(a) command. To display the zero value root(b) Example: X (z ) = 1 − 1.6180 z 1 − 1.5161z −1 −1 +z −2 + 0.878 z −2 >> b=[1 –1.6180 1]; >> a=[1 –1.5161 0.878]; >> roots(a) ans = 0.7581 + 0.5508i 0.7581 - 0.5508i >> roots (b) ans = 0.8090 + 0.5878i 0.8090 - 0.5878i >> zplane(b,a) Z-Transform with MatLab-5 Frequency Response estimation The freqz function computes and display the frequency response of given z-transform of the function. The command is >> freqz(b, a, npt, Fs) where Fs is the sampling frequency, npt is the number of frequency points between 0 and Fs/2. Example: X (z ) = 1 − 1.6180 z 1 − 1.5161z −1 −1 +z −2 + 0.878 z −2 >> b=[1 –1.6180 1]; >> a=[1 –1.5161 0.878]; >>freqz(b,a) Z-Transform with MatLab-6
© Copyright 2026 Paperzz