21/11/2011 CS475 / CM375 Lecture 20: Nov 17, 2011 Singular value decomposition Reading: [TB] Chapter 31 CS475/CM375 (c) 2011 P. Poupart & J. Wan 1 Singular Value Decomposition • Geometric view: • Let be the unit sphere in . is an ellipse in . The image CS475/CM375 (c) 2011 P. Poupart & J. Wan 2 1 21/11/2011 Interpretation • The singular values of are the lengths of the principal semi‐axes of : , , … , ⋯ – Convention: 0 • The left singular vectors of are the unit vectors ,…, in the direction of the principal semi‐ axes. • The right singular vectors of are the unit vectors ,…, ∈ such that CS475/CM375 (c) 2011 P. Poupart & J. Wan 3 Reduced SVD Σ • Decomposition: – Picture: – Here Σ , and have orthonormal columns. Σ • Equivalently: – Hence ∀ 1,2, … , – Picture: CS475/CM375 (c) 2011 P. Poupart & J. Wan 4 2 21/11/2011 Full SVD • Extend → orthogonal • Accordingly, Σ → Σ • Then Σ Σ 0 where , , – Picture: CS475/CM375 (c) 2011 P. Poupart & J. Wan 5 SVD vs Eigendecomposition • They both diagonalize a matrix . SVD uses 2 bases (left and right singular vectors). Eigendecomposition uses 1 basis (eigenvectors) • SVD uses orthonormal vectors where as eigenvectors are not orthonormal in general • Not all matrices have an eigendecomposition. But all matrices have a singular value decomposition CS475/CM375 (c) 2011 P. Poupart & J. Wan 6 3 21/11/2011 Matrix properties of SVD • Let ∈ , min , , # of nonzero singular values of . • Theorem: • Proof: The rank of a diagonal matrix = # of nonzero diagonal entries. Since Σ , then , orth ⟹ Σ CS475/CM375 (c) 2011 P. Poupart & J. Wan 7 Matrix properties of SVD ,…, • Theorem: and • Theorem: Note: ,…, ⋯ and , CS475/CM375 (c) 2011 P. Poupart & J. Wan ∑ 8 4 21/11/2011 Matrix properties of SVD • Proof: A CS475/CM375 (c) 2011 P. Poupart & J. Wan 9 Matrix properties of SVD • Theorem: The nonzero singular values of are the square roots of the nonzero eigenval. of or . and are similar to Σ • Proof: • Theorem: If , then particular, if is SPD, then CS475/CM375 (c) 2011 P. Poupart & J. Wan : ∈Λ Λ . . In 10 5 21/11/2011 Matrix properties of SVD • Theorem: the condition number of ∈ is • Proof: CS475/CM375 (c) 2011 P. Poupart & J. Wan 11 Computing the SVD • Recall: Σ Σ Σ Σ Σ ∴ eigenvalues of are σ CS475/CM375 (c) 2011 P. Poupart & J. Wan 12 6 21/11/2011 An SVD algorithm (1) Form (2) Compute the eigendecomposition (3) Compute Σ ⋱ , , Λ Λ ⋱ (4) Solve the equation Σ for orthogonal (by QR factorization) CS475/CM375 (c) 2011 P. Poupart & J. Wan 13 An SVD algorithm • Unstable algorithm – Suppose is computed stably, i.e., – Take square root to get – If ≪| |, (e.g., : ), then ⟹ loss of accuracy CS475/CM375 (c) 2011 P. Poupart & J. Wan 14 7 21/11/2011 Example • Find the SVD of 0 3 0 1/2 0 0 • Method 1: CS475/CM375 (c) 2011 P. Poupart & J. Wan 15 Example (continued) • Method 2: • Method 3: CS475/CM375 (c) 2011 P. Poupart & J. Wan 16 8 21/11/2011 Example (continued) • Method 3 (continued): CS475/CM375 (c) 2011 P. Poupart & J. Wan 17 9
© Copyright 2026 Paperzz