MAT 16A Trigonometric functions (A) 1 , sin x 1 sec x = , cos x sin x cos x cos x cot x = sin x csc x = tan x = (B) Negative angle sin(−x) = − sin x, cos(−x) = cos x tan(−x) = − tan x, cot(−x) = − cot x sec(−x) = sec x, csc(−x) = − csc x (C) Sum and difference formula sin2 x + cos2 x = 1 sec2 x − tan2 x = 1 csc2 x − cot2 x = 1. (D) Compound angle formula sin(a + b) = sin a cos b + cos a sin b cos(a + b) = cos a cos b − sin a sin b tan a + tan b tan(a + b) = 1 − tan a tan b cot a cot b − 1 cot(a + b) = cot a + cot b sin(a − b) = sin a cos b − cos a sin b cos(a − b) = cos a cos b + sin a sin b tan a − tan b tan(a − b) = 1 + tan a tan b cot a cot b + 1 cot(a + b) = cot b − cot a (E) Double angle formula sin 2a = 2 sin a cos a cos 2a = cos2 a − sin2 a = 1 − 2 sin2 a = 2 cos2 a − 1 1 (F) Sum to product formula sin(a + b) + sin(a − b) = 2 sin a cos b cos(a + b) + cos(a − b) = 2 cos a cos b sin(a + b) − sin(a − b) = 2 cos a sin b cos(a + b) − cos(a − b) = −2 sin a sin b (G) Interchange π π − x = cos x, sin π2 tan − x = cot x, 2π csc − x = sec x, 2 cos − x = sin x π2 cot − x = tan x 2π sec − x = csc x 2 (H) Particular values sin x x=0 0 cos x tan x csc x sec x cot x 1 0 DNE 1 DNE x= 1 √2 3 2 √1 3 2 √2 √3 3 π 6 π 4 x= √1 2 √1 2 1 √ 2 √ 2 1 π 3 x√ = 3 2 1 √2 3 √2 3 2 √1 3 π 2 x=π 0 0 DNE 1 DNE 0 −1 0 DNE −1 DNE x= 1 (I) Derivatives d [sin x] = cos x, dx d [tan x] = sec2 x, dx d [sec x] = sec x tan x, dx 2 d [cos x] dx d [cot x] dx d [csc x] dx = − sin x = − csc2 x = − csc x cot x
© Copyright 2026 Paperzz