9-3 Rotations

NAME _____________________________________________ DATE ____________________________ PERIOD _____________
9-3 Rotations
Rotations: _______________________________________________________________________________________
_________________________________________________________________________________________________
Draw Rotations In The Coordinate Plane The following rules can be used to rotate a point 90°, 180°, or 270°
counterclockwise about the origin in the coordinate plane.
To rotate
Mapping
90° Counterclockwise
180° Counterclockwise
270° Counterclockwise
*To rotate clockwise:________________________________________________________________________________
Example: Parallelogram WXYZ has vertices W(–2, 4), X(3, 6), Y(5, 2), and Z(0, 0).
Graph parallelogram WXYZ and its image after a rotation of 270° about the origin.
(x, y)
→
W(–2, 4) →
X(3, 6) →
Y(5, 2) →
Z(0, 0) →
Graph each figure and its image after the specified rotation about the origin.
1. trapezoid FGHI has vertices F(7, 7),
G(9, 2), H(3, 2), and I(5, 7); 90° Counterclockwise
2. ∆ PQR has vertices P(-3, 5),
Q(0, 2), and R(-5, 1); 270° Counterclockwise
NAME _____________________________________________ DATE ____________________________ PERIOD _____________
3. △STU has vertices S(2, –1), T(5, 1) and
U(3, 3); 90° Clockwise
4. △DEF has vertices D(–4, 3), E(1, 2), and
F(–3, –3); 180° Clockwise
5. quadrilateral WXYZ has vertices
W(–1, 8), X(0, 4), Y(–2, 1) and
Z(–4, 3); 180° Counterclockwise
6. trapezoid ABCD has vertices A(9, 0),
B(6, –7), C(3, –7) and D(0, 0); 270° Clockwise
For 7-12, determine which of the following transformation applies to the figure:
7. ____________________________
8. ________________________________
9. __________________________
10. ___________________________
11._______________________________
12. __________________________