NAME _____________________________________________ DATE ____________________________ PERIOD _____________ 9-3 Rotations Rotations: _______________________________________________________________________________________ _________________________________________________________________________________________________ Draw Rotations In The Coordinate Plane The following rules can be used to rotate a point 90°, 180°, or 270° counterclockwise about the origin in the coordinate plane. To rotate Mapping 90° Counterclockwise 180° Counterclockwise 270° Counterclockwise *To rotate clockwise:________________________________________________________________________________ Example: Parallelogram WXYZ has vertices W(–2, 4), X(3, 6), Y(5, 2), and Z(0, 0). Graph parallelogram WXYZ and its image after a rotation of 270° about the origin. (x, y) → W(–2, 4) → X(3, 6) → Y(5, 2) → Z(0, 0) → Graph each figure and its image after the specified rotation about the origin. 1. trapezoid FGHI has vertices F(7, 7), G(9, 2), H(3, 2), and I(5, 7); 90° Counterclockwise 2. ∆ PQR has vertices P(-3, 5), Q(0, 2), and R(-5, 1); 270° Counterclockwise NAME _____________________________________________ DATE ____________________________ PERIOD _____________ 3. △STU has vertices S(2, –1), T(5, 1) and U(3, 3); 90° Clockwise 4. △DEF has vertices D(–4, 3), E(1, 2), and F(–3, –3); 180° Clockwise 5. quadrilateral WXYZ has vertices W(–1, 8), X(0, 4), Y(–2, 1) and Z(–4, 3); 180° Counterclockwise 6. trapezoid ABCD has vertices A(9, 0), B(6, –7), C(3, –7) and D(0, 0); 270° Clockwise For 7-12, determine which of the following transformation applies to the figure: 7. ____________________________ 8. ________________________________ 9. __________________________ 10. ___________________________ 11._______________________________ 12. __________________________
© Copyright 2026 Paperzz