9.2 Reference and Special Angles Write your questions here! NOTES Reference Anglessin 40° sin 140° sin 220° sin 320° Find the Reference Angle 23π 12 β100° SPECIAL ANGLES FIND THE EXACT VALUE! cos 120° = tan 315° = sin 210° = sec 180° = 5π = 4 π cot = 4 sin 2π οΏ½= 3 3π sec = 2 cos οΏ½β Find all 6 trig functions degrees ππ° degrees radians π¬π¬π¬ π½ πππ π½ πππ π½ πππ π½ π¬π¬π¬ π½ πππ π½ - degree - radian radians π π π¬π¬π¬ π½ πππ π½ πππ π½ πππ π½ π¬π¬π¬ π½ πππ π½ - degree - radian If π° β€ π½ β€ πππ°, then find π½ 1 a. sin π = 2 1 b. cos π = 2 c. tan π = β1 d. sin π = β3 2 e. cos π = 0 f. cot π = undefined SUMMARY: Now, summarize your notes here! PRACTICE 9.2 Reference and Special Angles Find the reference angle. 1. 2. 3. 5. β130° 6. 230° 7. β 9. sin 90° = 10. cos 120° = 11. tan 45° = 15. sin 330° = 16. tan 315° = 17. cos 240° = 4. 13π 8. 9 Find the exact value. 12. tan 120° = 18. sin(β225°) = 21. sec (180°) = Find the exact value. π 30. sin 33. tan 4π 3 5π 4 7π 4 19. cos (β240°) = 22. csc (β270°) = π 24. sin 2 = 27. cos 13. cos 225° = = = = π 36. cos οΏ½β 3 οΏ½ = 25. tan 4 = π 28. cos 6 = 31. cos 5π 3 = 34. sin(βπ) = π 37. sec οΏ½β 2 οΏ½ = 14. sin 135° = 20. tan (β 300°) = 23. cot (β315°) = 26. cos 3π 32. sin 5π = 2 29. tan π = 6 = 35. tan οΏ½β 38. sin οΏ½β 3π 2 5π 4 οΏ½= οΏ½= 3π 4 If π° β€ π½ β€ πππ°, then find π½ 1 39. sin π = 2 42. sin π = 40. cos π β2 2 43. cos π = β 45. csc π = 2 If ππ β€ π½ β€ ππ, then find π½ β3 = 2 β3 =2 41. tan π = ββ3 β2 2 44. tan π = β 46. sec π = β2 β3 3 47. cot π = undefined If you like pictures of circles, you can draw one here! β2 =2 49. tan π = 1 50. cos π 51. cos π = β 2 52. tan π = β3 53. cos π = 0 54. csc π = undefined 55. cot π = β 1 56. sin π = β 2 48. sin π 1 If you like pictures of circles, you can draw one here! 1 57. Fill in the table below. degrees radians πππ° π¬π¬π¬ π½ πππ π½ πππ π½ πππ π½ π¬π¬π¬ π½ πππ π½ - degree - radian π¬π¬π¬ π½ πππ π½ πππ π½ πππ π½ π¬π¬π¬ π½ πππ π½ - degree - radian 58. Fill in the table below. degrees radians β ππ π 59. Fill in the table below. degrees radians π¬π¬π¬ π½ β 1 2 πππ π½ β3 2 πππ π½ πππ π½ π¬π¬π¬ π½ πππ π½ - degree - radian Skillz Review! Letβs put some Trig in our Algebra! COMPLEX FRACTION aka FRACTION IN A FRACTION 2ο£Ά  ο£· ο£3ο£Έ = 6ο£Ά  ο£· ο£5ο£Έ secΞΈ = tan ΞΈ  1 ο£Ά  ο£· ο£ cos x ο£Έ =  1 ο£Ά  ο£· ο£ sin x ο£Έ ADD/SUBTRACT FRACTIONS 2 4 + = 5 7 1 1 + = sin x 3 9.2 Reference and Special Angles 1. Find the reference angle. tan ΞΈ β secΞΈ = APPLICATION 2. Find the exact value. cos 7π = 6 3. Mr. Brust wants a table including every single special angle in a unit circle, but he is really lazy. On the back of the page he filled in a table for quadrant I and then took a nap. Use his info to fill in the rest of the table and quadrants II, III, and IV on the Unit Circle. Donβt do any math! Just use your knowledge of reference angles to complete the table. You will need this table for the next section, so take your time and make it look pretty! (+, +) π¬π¬π¬ π½ πππ π½ πππ π½ πππ π½ π¬π¬π¬ π½ 6 1 2 3 2 3 3 2 2 3 3 Ο 4 2 2 2 2 1 3 2 1 2 1 0 degrees radians 0° / 360° 0Ο / 2Ο 30° Ο 45° 60° 90° Ο 3 Ο 2 0 1 0 3 Und und 2 1 2 πππ π½ und - degree - radian β 0° / β 360° β 0Ο / β 2Ο 3 -330° β 11Ο 6 1 -315° β 7Ο 4 2 3 3 2 3 3 -300° β 1 Und 0 -270° β 5Ο 3 3Ο 2
© Copyright 2026 Paperzz