Re: Tangential quadrilateral well known properties? (QFG message 26) Mosca Sebastiano: ABCD is a circumscribed quadrilateral, PQRS the points of tangency with the inscribed circle center O, M and N are the midpoints of AB and CD, K is the intersection of SQ and MN Prove OK is parallel to PR. C D R N Q K S O A P B M Here is a simple calculation with barycentric coordinates, using the QA-Diagonal Triangle of the quadrigon PQRS as reference triangle: Let A0B0C0 be the reference triangle for barycentric coordinates, obtuse-angled at B0. Use the polar circle ([1], p.37) of the reference triangle with the equation S A x ² S B y ² SC z ² 0 for a cyclic quadrigon PQRS: P(u : v : w), Q(u : v : w), R(u : v : w), S (u : v : w) S u ² SC w² with v ² A . SB Co Ao A M B P Q Bo K S O D R N C The tangents in P, Q, R, S have the intersections A(S B v : S Au : 0), B(0 : SC w : S B v), C (S B v : S Au : 0), D(0 : SC w : S B v) . The midpoints of AB and CD are M (S B v(S B v SC w) : S A S Buv 2S A SC uw S B SC vw : S B v(S B v S Au)) N (S B v(S B v SC w) : S A S Buv 2S A SC uw S B SC vw: S B v(S B v S Au)) . This gives the intersection of QS and MN S S u ² ( S ² S A SC )uw S B SC w² K (u : A B : w) . S B ( S Au SC w) The center of the polar circle is the orthocenter of the reference triangle O(S B SC :S C S A : S A S B ) . The common point at infinity of KO and PR is (u : u w : w) , so KO and PR are parallel. [1] http://forumgeom.fau.edu/FG2004volume4/FG200405.pdf Eckart Schmidt http://eckartschmidt.de [email protected]
© Copyright 2026 Paperzz