Arvind Borde: Math 7 Homework 8, Part a, solutions, page 192, 3–14 and f 00 (x) < 0 when 4x2 < 1 or 4x2 < x2 + 12 or 3x2 < 12 or x2 < 4. x2 + 12 f (x) is concave up (f 00 (x) > 0) on (−∞, −2) and (2, ∞). f (x) is concave down (f 00 (x) < 0) on (−2, 2). 8. f 0 (x) = = f 00 (x) = = NOTE: The graphs below are graphs of the original functions. Red lines are concave up and blue lines are concave down. 3. y 0 = 2x − 1, y 00 = 2 > 0. Graph of y is concave up throughout. 4. g 0 (x) = 6x − 3x2 , g 00 (x) = 6 − 6x = 6(1 − x). g(x) is concave up (g 00 (x) > 0) when 1 > x. g(x) is concave down (g 00 (x) < 0) when 1 < x. 5. f 0 (x) = −3x2 + 12x − 9, f 00 (x) = −6x + 12 = 6(−x + 2). f (x) is concave up (f 00 (x) > 0) when x < 2. f (x) is concave down (f 00 (x) < 0) when x > 2. = 12x3 + 4x − 12x3 4x(3x2 + 1) − 2x2 (6x) = 2 2 (3x + 1) (3x2 + 1)2 4x . 2 (3x + 1)2 4(3x2 + 1)2 − 4x[2(3x2 + 1)(6x)] (3x2 + 1)4 (3x2 + 1)[4(3x2 + 1) − (8x)(6x) (3x2 + 1)4 12x2 + 4 − 48x2 4 − 36x2 = . 2 3 (3x + 1) (3x2 + 1)3 Therefore, f 00 (x) > 0 when 4 > 36x2 , or x2 < 4/36 = 1/9, or − 1/3 < x < 1/3, and f 00 (x) < 0 when 4 < 36x2 , or x2 > 4/36 = 1/9, or x < −1/3, x > 1/3. f (x) is concave up (f 00 (x) > 0) on (−1/3, 1/3). f (x) is concave down (f 00 (x) < 0) on (−∞, −1/3) and (1/3, ∞). 9. f 0 (x) = = 6. h0 (x) = 5x4 − 5, h00 (x) = 20x3 . h(x) is Concave up (h00 (x) > 0) when x > 0. h(x) is concave down (h00 (x) < 0) when x < 0. f 00 (x) = = = 7. 2 f (x) = 24(x + 12) 0 2 −1 f (x) = −24(x + 12) . −2 (2x) = −48x(x2 + 12)−2 . f 00 (x) = −48(x2 + 12)−2 − 48x[−2(x2 + 12)−3 (2x)] = −48(x2 + 12)−2 + 48 × 4x2 [(x2 + 12)−3 ] = −48(x2 + 12)−2 [−1 + 4x2 (x2 + 12)−1 ] −48 4x2 = 2 −1 + 2 (x + 12)2 x + 12 Therefore, f 00 (x) > 0 when 4x2 > 1 or 4x2 > x2 + 12 x2 + 12 or 3x2 > 12 or x2 > 4, 2x(x2 − 1) − (x2 + 1)(2x) (x2 − 1)2 3 2x − 2x − 2x3 − 2x −4x = 2 (x2 − 1)2 (x − 1)2 −4(x2 − 1)2 + 4x[2(x2 − 1)(2x)] (x2 − 1)4 2 4(x − 1)[−(x2 − 1) + 4x2 ] (x2 − 1)4 2 4[−x + 1 + 4x2 ] 4(3x2 + 1) = . (x2 − 1)3 (x2 − 1)3 The numerator here is always positive. The sign of f 00 (x) will depend on the sign of (x2 − 1): f 00 (x) > 0 when x2 > 1 and f 00 (x) < 0 when x2 < 1. f (x) is concave up (f 00 (x) > 0) on (−∞, −1) and (1, ∞). f (x) is concave down (f 00 (x) < 0) on (−1, 1). 12. 2x(2x − 1) − (x2 − 1)(2) (2x − 1)2 2x2 − 2x + 2 4x2 − 2x − 2x2 + 2 = . = 2 (2x − 1) (2x − 1)2 (4x − 2)(2x − 1)2 − (2x2 − 2x + 2)[2(2x − 1)(2)] h00 (x) = (2x − 1)4 (4x − 2)(2x − 1)2 − 4(2x2 − 2x + 2)(2x − 1) = (2x − 1)4 (2x − 1)[(4x − 2)(2x − 1) − 4(2x2 − 2x + 2)] = (2x − 1)4 2 8x − 4x − 4x + 2 − 8x2 + 8x − 8 −6 = = (2x − 1)3 (2x − 1)3 The numerator here is always negative. The sign of h00 (x) will depend on the sign of (2x − 1): h00 (x) > 0 when 2x < 1 and h00 (x) < 0 when 2x > 1. h(x) is concave up (h00 (x) > 0) on (−∞, 1/2). h(x) is concave down (h00 (x) < 0) on (1/2, ∞). h0 (x) = 1 1 (−3x5 + 40x3 + 135x)0 = (−15x4 + 120x2 + 135). 10. y 0 = 270 270 1 1 2x (−60x3 + 240x) = (60x)(−x2 + 4) = (−x2 + 4). y 00 = 270 270 9 y 00 > 0 when x and (−x2 + 4) have the same sign. y 00 < 0 when x and (−x2 + 4) have opposite signs. It is easy to check to see the following: x < −2: y 00 > 0, therefore y is concave up. −2 < x < 0: y 00 < 0, therefore y is concave down. 0 < x < 2: y 00 > 0, therefore y is concave up. 2 < x: y 00 < 0, therefore y is concave down. 11. g 0 (x) = = g 00 (x) = = = 2x(4 − x2 ) − (x2 + 4)(−2x) (4 − x2 )2 3 8x − 2x + 2x3 + 8x 16x = . 2 2 (4 − x ) (4 − x2 )2 16(4 − x2 )2 − 16x[2(4 − x2 )(−2x)] (4 − x2 )4 2 2 16(4 − x ) + 64x2 (4 − x2 ) (4 − x2 )4 2 16(4 − x )[(4 − x2 ) + 4x2 ] 16(4 + 3x2 ) = (4 − x2 )4 (4 − x2 )3 The numerator here is always positive. The sign of g 00 (x) will depend on the sign of (4 − x2 ): g 00 (x) > 0 when x2 < 4 and g 00 (x) < 0 when x2 > 4. g(x) is concave up (g 00 (x) > 0) on (−2, 2). g(x) is concave down (g 00 (x) < 0) on (−∞, −2) and (2, ∞). 13. y 0 = 2 − sec2 x, y 00 = −[2 sec x][sec x tan x] = 2 sec2 x tan x. Since sec2 x > 0, the sign of y 00 will depend on the sign of tanx on the given interval (−π/2, π/2). The graph of tan x shows that it is positive in this interval for x > 0 and negative for x < 0. Therefore, y is concave up (y 00 > 0) on (−π/2, 0), and y is concave down (y 00 < 0) on (0, π/2). 14. y = x + 2(sin x)−1 , so y 0 = 1 − 2(sin x)−2 cos x. 4 cos x 2 y 00 = 4(sin x)−3 cos x − 2(sin x)−2 (− sin x) = + 3 sin x sin x If you plot the answer for y 00 , you will see that it is positive when x > 0 and negative when x < 0. So, y is concave up (y 00 > 0) on (0, π), and y is concave down (y 00 < 0) on (−π, 0).
© Copyright 2026 Paperzz