16-311 Introduction to Robotics Guest Lecture on Aerial Robotics Quadrotor Modeling and Control Nathan Michael February 05, 2014 Lecture Outline • • • Modeling: • • Dynamic model from first principles Propeller model and force and moments generation Control • • Attitude control (inner loop) Position control (outer loop) Current research challenges Lecture Objective Develop preliminary concepts required to enable autonomous flight: e3 e2 e1 D. Mellinger, N. Michael, and V. Kumar. Trajectory generation and control for precise aggressive maneuvers with quadrotors. Intl. J. Robot. Research, 31(5):664–674, Apr. 2012. 1. Vehicle model 2. Attitude and position control 3. Trajectory generation Quadrotor Model Concept Review Newton-Euler equations: mass total force F m13 = ⌧ 03 linear acceleration 03 I3 linear velocity a ! ⇥ mv + ↵ ! ⇥ I3 ! total torque angular velocity moment of inertia angular acceleration Quadrotor Model Concept Review Rigid transformation: b3 e3 pe = Reb pb + re rotation translation Reb re pb b2 b1 e2 e1 Euler angle parameterization of rotation: Reb = Rz ( )Ry (✓)Rx ( ) ZYX (321) form Quadrotor Model Concept Review Euler angle parameterization of rotation: b3 e3 Reb = Rz ( )Ry (✓)Rx ( ) yaw 2 1 Rx ( ) = 4 0 0 0 c s pitch roll 3 2 0 c✓ s 5 Ry (✓) = 4 0 c s✓ pb b2 Reb re b1 e2 e1 3 2 0 s✓ c 1 0 5 Rz ( ) = 4 s 0 c✓ 0 s c 0 3 0 05 1 Quadrotor Model Newton-Euler equations: F m13 = ⌧ 03 03 I3 a ! ⇥ mv + ↵ ! ⇥ I3 ! f3 e3 f4 f4 b 3 f2 f3 b2 b3 Total force: Body: Inertial: b2 f4 f1 f1 b1 f2 e2 e1 b1 COM 2 3 4 0 X Fb = 4 0 5 f= fi along b3 f i=1 Fe = Reb Fb mg gravity b2 f1 re f3 b 3 f2 b1 Quadrotor Model Newton-Euler equations: F m13 = ⌧ 03 f3 f4 03 I3 a ! ⇥ mv + ↵ ! ⇥ I3 ! b2 b3 f2 f1 f1 b1 f4 ) ⌧b2 = d (f3 f1 ) f1 ⌧1 ⌧2+ ⌧4+ ⌧3 b1 e1 induced moments b1 b2 b2 b1 d ⌧b1 = d (f2 b 3 f2 e2 b2 f4 Total torque: Recall: ⌧ = r ⇥ F e3 f4 re f3 b 3 f2 f3 ⌧b 3 = ⌧ 1 + ⌧2 propeller direction of rotation ⌧3 + ⌧4 Quadrotor Model Equations of motion: 03 I3 m13 03 Reb Fb mg a ! ⇥ mv Fe + = = T ↵ ! ⇥ I3 ! ⌧ [⌧b1 , ⌧b2 , ⌧b3 ] Fe = Reb Fb mg 2 3 0 Fb = 4 0 5 f Motor model: b1 ⌧1 b2 ⌧2+ ⌧4+ ⌧3 fi = c T ! ¯ i2 ⌧i = ±cQ ! ¯ i2 2 3 2 f cT 6 ⌧b1 7 6 0 6 7=6 4⌧b2 5 4 dcT ⌧b3 cQ ⌧b1 = d (f2 f4 ) ⌧b2 = d (f3 f1 ) ⌧b 3 = ⌧ 1 + ⌧2 ⌧3 + ⌧4 Approximate relationship between propeller speeds and generated thrusts and moments cT dcT 0 cQ cT 0 dcT cQ 32 3 cT w̄12 6w̄22 7 dcT 7 7 6 27 0 5 4w̄3 5 cQ w̄42 Lecture Outline • • • Modeling: • • Dynamic model from first principles Propeller model and force and moments generation Control • • Attitude control (inner loop) Position control (outer loop) Current research challenges Control System Diagram p d u1 = f d Position Controller Motor Controller Trajectory Planner d Attitude Planner Rd Attitude Controller u2 = ⇥ ⌧bd1 , ⌧bd2 , Recent tutorial on quadrotor control: R. Mahony, V. Kumar, and P. Corke. Multirotor aerial vehicles: Modeling, estimation, and control of quadrotor. IEEE Robot. Autom. Mag., 19(3):20–32, Sept. 2012. ! ¯i ⇤ d T ⌧ b3 Dynamic Model Attitude Control Inner Loop PD control law: u2 = nonlinear Rotation error metric: eR = k R eR ⇣ 1 2 R d T R k ! e! e! = ! RT Rd ⌘_ !d Attitude Control Inner Loop Linearize the nonlinear model about hover: R0 = R ( R d = Rz ( Rotation error metric: eR = after linearization ⇣ 1 2 2 u4 =[ 0 0 = 0, ✓0 = 0, + R d T ) Ryx ( , T d R0 R R0 0 ✓ 0 ✓ , 0) 0 ✓, ] T ✓) ⌘_ 3_ 5 Attitude Control Inner Loop PD control law: u2 = k R eR eR = [ , e! = ! p d k ! e! ✓, !d u1 = f d Position Controller Motor Controller Trajectory Planner d Attitude Planner Rd ] T Attitude Controller ! ¯i ⇥ ⇤T u2 = ⌧bd1 , ⌧bd2 , ⌧bd3 Dynamic Model Position Control Outer Loop PD control law: e a + k d ev + k p ep = 0 Linearize the nonlinear model about hover: Nominal input: u1 = mg u2 = 03⇥1 p d u1 = f d Position Controller Motor Controller Trajectory Planner d Attitude Planner Rd Attitude Controller ! ¯i ⇥ ⇤T u2 = ⌧bd1 , ⌧bd2 , ⌧bd3 Dynamic Model Position Control Outer Loop PD control law: u1 = T mb3 d g + a + K d ev + K p e p d ep = p p ev = v vd How do we pick the gains? p d u1 = f d Position Controller Motor Controller Trajectory Planner d Attitude Planner Rd Attitude Controller u2 = ⇥ ⌧bd1 , ⌧bd2 , ! ¯i ⇤ d T ⌧ b3 Dynamic Model Lecture Outline • • • Modeling: • • Dynamic model from first principles Propeller model and force and moments generation Control • • Attitude control (inner loop) Position control (outer loop) Current research challenges Current Research Challenges How should we coordinate multiple robots given network and vehicle limitations? Current Research Challenges How do we estimate the vehicle state and localize in an unknown environment using only onboard sensing? GPS Camera Laser IMU Barometer Cameras IMU Current Research Challenges How do we estimate the vehicle state and localize in an unknown environment using only onboard sensing? Lecture Summary • • • Modeling: • • Dynamic model from first principles Propeller model and force and moments generation Control • • e3 e2 e1 Attitude control (inner loop) Position control (outer loop) Current research challenges 1. Vehicle model 2. Attitude and position control 3. Trajectory generation
© Copyright 2026 Paperzz