Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1965 A Study of the Inheritance of Root Shape, Skin Color, Total Carotenoid Pigments, Dry Matter, Fiber and Baking Quality in the Sweet Potato (Ipomoea Batatas). Harrell Lee Hammett Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: http://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Hammett, Harrell Lee, "A Study of the Inheritance of Root Shape, Skin Color, Total Carotenoid Pigments, Dry Matter, Fiber and Baking Quality in the Sweet Potato (Ipomoea Batatas)." (1965). LSU Historical Dissertations and Theses. 1076. http://digitalcommons.lsu.edu/gradschool_disstheses/1076 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. This dissertation has been m icrofilm ed exactly as received 0 6— 7 32 ~ H AM M ETT, H a r r e ll L e e , 1 9 2 5 A STUDY OF THE INHERITANCE OF ROOT SH A PE, SKIN COLOR, TO TAL CAROTENOID PIGM ENTS, DRY M A TTER , FIB E R AND BAK ING Q UALITY IN THE SWEET POTATO (IPOMOEA BATATAS). L o u isia n a State U n iv e r sity , P h .D ., 1965 A g r ic u ltu r e , plant cu ltu re University Microfilms, Inc., Ann Arbor, M ichigan A STUDY OF THE INHERITANCE OF ROOT SHAPE, SKIN COLOR, TOTAL CAROTENOID PIGMENTS, DRY MATTER, FIBER AND BAKING QUALITY IN THE SWEET POTATO ( IPOMOEA BATATAS) A Dissertation Submitted to the Graduate Faculty o f the Louisiana S t a t e U n i v e r s i t y and A g r i c u l t u r a l and Mechanical College in p a r t i a l f u l f i l l m e n t of the requirements f o r the degree o f Doctor o f Philosophy in The Department o f H o r t i c u l t u r e by H a r r e l l Lee Hammett B . S . , Louisiana P o ly t e c h n ic I n s t i t u t e , 1951 M . S . , Louisiana S t a t e U n i v e r s i t y , 1953 August, 1965 ACKNOWLEDGEMENTS The au th or wishes to express his a p p r e c i a t i o n t o each member of the committee f o r ad v ic e , c r i t i c i s m s and encouragement. p e c ia lly grateful to Dr. He is es J u l i a n C. M i l l e r and Dr. C. C. S i n g l e t a r y f o r making the f a c i l i t i e s o f the Department o f H o r t i c u l t u r e a t Louisiana S t a t e U n i v e r s i t y and M i s s is s ip p i S t a t e U n i v e r s i t y , a v a i l a b l e f o r t h i s study. G r a ti tu d e respectively, is extended to Dr. Teme P. Hernandez f o r d i r e c t i n g the problem and c r i t i z i n g the manuscript; to Dr. M. T. Henderson f o r counsel and f o r c r i t i z i n g the manuscript; and to o t h e r members of the committee f o r re vie wing the manuscript and o f f e r i n g suggestions. A p p r e c i a ti o n is expressed to Dr. E. L. Moore and Dr. J. B. Edmond f o r advice and a s s is ta nc e script, and t o Dr. W. J. in preparing the manu Drapala f o r his as si st anc e w it h the s t a t i s t i cal an alyses. To his w i f e , Emma Lee B. Hammett, and f a m i l y , the w r i t e r expresses his g r a t i t u d e f o r t h e i r s a c r i f i c e s which made t h i s study p o s si b le . TABLE OF CONTENTS Page ACKNOWLEDGEMENTS.............................................................................................................. ti LIST OF TABLES...................................................................................... iv LIST OF PLATES.................................................................................................................. vi i ABSTRACT...................................................................... ..........................................................v i i i INTRODUCTION....................................................................................................................... 1 REVIEW OF LITERATURE..................................................................................................... 3 MATERIALS AND METHODS ................................................................................................ 20 Source o f M a t e r i a l ...................................................................................... Measurements of the Raw R o o t s ......................................................................... Measurements o f the Baked Roots ..................................................................... 20 21 25 RESULTS AND DISCUSSION................................................................................................ 28 In h e r i t a n c e Inheritance In h e r i t a n c e Inheritance Inheritance Inheritance Inheritance Inheritance Inheritance Inheritance Inheritance Inheritance Inheritance Inheritance Inheritance of of of of of of of of of of of of of of of Shape............................................................................................... Smoothness .................................................................................. Cortex Thickness of Sweet Potato Roots .................. Dry M a t t e r .......................... Carotene ....................................................................................... Skin C o l o r ...................................... ......................................... Characters C o n t r i b u t in g to Baking Q u a l i t y . . . . Color I n t e n s i t y ......................................................................... Color U n i f o r m i t y ..................................................................... M ois tness...................................................................................... Fl av or ........................................................................................... Sweetness...................................................................................... Firmness ...................................................................................... F i b e r ................................................................................................ Baking Index .............................................................................. 33 41 46 57 57 64 70 70 70 79 84 93 93 102 112 SUMMARY AND CONCLUSIONS............................................. 115 BIBLIOGRAPHY.................................................................... 120 AUTOBIOGRAPHY ................................................................................................................... 129 LIST OF TABLES TABLE 1. 2. Page A D e s c r i p ti o n o f the Characters o f the Raw Roots o f 14 Sweet Potato Breeding Parents ........................................................... 29 A D e s c r i p ti o n o f the Characters o f the Baked Roots of 14 Sweet Potato Breeding Parents ....................... 30 3. The E f f e c t o f Parentage on the A b i l i t y o f Seedlings in Each Progeny to Produce Roots t h a t Stor e W e l l .............................32 4. Comparative Data of Seedlings when Parents used as a Male or Female...................... 34 5. Frequency D i s t r i b u t i o n o f Number o f Sweet Potato Seed lin gs o f Each Progeny i n t o D i f f e r e n t Length:Width R a tio C l a s s e s ................................................................................................................... 35 6. Percentage o f Sweet Potato Seedlings o f Each Progeny in D i f f e r e n t Length:Width R a t i o Classes. . ..................................... 37 7. Frequency D i s t r i b u t i o n o f Number o f Sweet Potato Seedlings o f Each Progeny in to D i f f e r e n t Classes Based on Smoothness o f the Root S u r f a c e ........................................................................................42 8. Percentage of Sweet Potato Seedlings o f Each Progeny in the D i f f e r e n t Classes Based on the Smoothness of the Root S u r f a c e ................................................................................................................... 44 9. Frequency D i s t r i b u t i o n o f Sweet Potato Seedlings o f Each Progeny i n to D i f f e r e n t Classes Based on Thickness o f the Cortex o f the Roots .......................................................................... 47 10. Percentage' o f Sweet Potato Seedlings o f Each Progeny in D i f f e r e n t Classes Based on Thickness o f Cortex of the Roots. ........................................................................................................49 11. Frequency D i s t r i b u t i o n o f Number o f Sweet Potato Seedlings o f Each Progeny i n to D i f f e r e n t Classes Based on Dry M a t t e r Content .............................................. . . . . . 53 12. Percentage o f Sweet Potato Seedlings o f Each Progeny in D i f f e r e n t Classes Based on Dry M a t t e r Content . . . . . . iv 55 TABLE Page 13. D i s t r i b u t i o n o f Number o f Sweet Potato Seedlings of Each Progeny i n t o Classes Based on Carotene Content o f the Roots.................................................................................................................................58 14. Percentage o f Sweet Potato Seedlings of Each Progeny in D i f f e r e n t Classes Based on Carotne Content of the Roots. . . 60 15. Frequency D i s t r i b u t i o n o f Number o f Sweet Potato Seedlings o f Each Progeny into D i f f e r e n t Skin Color Classes .............................65 16. Percentage o f Sweet Potato Seedlings of Each Progeny in D i f f e r e n t Skin Color Classes ..................................................................... 67 17. Frequency D i s t r i b u t i o n of Number of Sweet Potato Seedlings in Each Progeny into D i f f e r e n t Classes Based on Color I n t e n s i t y o f the Baked R o o t s ...........................................................................71 18. Percentage o f Sweet Potato Seedlings o f Each Progeny in D i f f e r e n t Classes Based on Color I n t e n s i t y o f Baked Roots. . 73 19. Frequency D i s t r i b u t i o n o f Number o f Sweet Potato Seedlings in Each Progeny in to D i f f e r e n t Classes Based on Uniformi ty o f Coior o f the Baked Roots............................................................................... 75 20. Percentage o f Sweet Potato Seedlings o f Each Progeny in D i f f e r e n t Classes Based on U n if o r m it y o f Color of the Baked Roots....................................................................................................................77 21. Frequency D i s t r i b u t i o n o f Number o f Sweet Potato Seedlings o f Each Progeny into D i f f e r e n t Classes Based on Moistness o f the Baked R o o t s ................................................................................................. 80 22. Percentage o f Sweet Potato D i f f e r e n t Classes Based on Seedlings o f Each Progeny in Moistness of the Baked Roots. . . 82 23. Frequency D i s t r i b u t i o n o f Number o f Sweet Potato Seedlings o f Each Progeny in to Classes Based on F l a v o r of the Baked Roots................................................................................................................................. 85 24. Percentage o f Sweet Potato D i f f e r e n t Classes Based on Seedlings o f Each Progeny in F l a v o r o f the Baked Roots . . . . 87 25- Frequency D i s t r i b u t i o n o f Number o f Sweet Potato Seedlings o f Each Progeny in to D i f f e r e n t Classes Based on Sweetness o f the Baked R o o t s ................................................................................................. 89 26. Percentage o f Sweet Potato D i f f e r e n t Classes Based on 27. Seedlings o f Each Progeny in Sweetness of the Baked Roots. . . 91 Frequency D i s t r i b u t i o n o f Number o f Sweet Potato Seedlings of Each Progeny in to D i f f e r e n t Classes Based on Firmness o f the Baked Roots . ........................................................................................ 94 v Page TABLE 28. Percentage o f Sweet Potato Seedlings of Each Progeny in The D i f f e r e n t Classes Based on Firmness of the Baked Roots. '. 96 29. Frequency D i s t r i b u t i o n o f Number o f Sweet Potato Seedlings of Each Progeny i n t o D i f f e r e n t Classes Based on Percentage F i b e r in the Baked Roots......................................................................................98 30. Percentage o f Sweet Potato Seedlings of Each Progeny in D i f f e r e n t Classes Based on Percentage F i b e r in the Baked R o o t s .............................................................................................................................100 31. Frequency D i s t r i b u t i o n of Number of Sweet Potato Seedlings o f Each Progeny i n to D i f f e r e n t Classes Based on F i b e r S i z e . .106 Percentage of Sweet Potato Seedlings of Each Progeny in D i f f e r e n t Classes Based on F i b e r S i z e ........................................ .108 32. . 33. Frequency D i s t r i b u t i o n o f Number o f Sweet Potato Seedlings of Each Progeny i n t o D i f f e r e n t Classes Based on the Baking I ndex ................................................................................................................... . 1 1 0 3^. Percentage of Sweet Potato Seedlings of Each Progeny in D i f f e r e n t Classes Based on the Baking I n d e x ...................................... I l l 35. C o r r e l a t i o n C o e f f i c i e n t s Between Some V a r i a b l e s in the F] Progenies of the 21 Parental Combinations............................................. 113 vi LIST OF PLATES PLATE 1. Page The Sweet Potato Skin Color Sc ale, Prepared by the Un ite d States Department o f A g r i c u l t u r e in Coopera t i o n w i t h the Sweet Potato C o lla bo r at or s Conference, Represents from L e f t to Ri gh t; Purple, Rose, Copper, Tan and Cream C o lo r s .................................... 22 2. The Scale Used f o r Smoothness of Root Surface, R a t ings were, by Columns, L e f t to Ri ght ; 1, 2, 3, 4 and 5 R e s p e c t i v e l y ......................................................................................................24 3. The F i b e r Diameter Scale as I l l u s t r a t e d is Represent ed by Values: Top Rows; ( L e f t to R i gh t) l=Very Coarse, 2=Coarse; Bottom Row; 3=Medium, 4= Fin e, and 5=Very Fine ( 1 . 5 Time Actual S i z e ) ........................................................... * 26 4. V a r i a t i o n s in Shape Observed in the F) Progeny of the Cross L3-77 x L3-80: Lower Row Represents De si ra bl e Length........................................................................................................................40 5- Two Examples of Severe Cracking of the Roots Occurring Appar ent ly Ea rly in the Growing Season...............................................45 6. V a r i a t i o n in the Thickness and Color o f the Cortex in Roots o f the Progeny of the Cross L3-93 x L l - 8 0 ................... 52 7. V a r i a t i o n in the I n t e r n a l Color o f the Roots in the Fj Progeny o f the Cross L3-93 x L l - 8 0 ...............................................62 8. Skin Color V a r i a t i o n o f Roots of D i f f e r e n t Seedlings in the F] Progeny o f the Cross L3-77 x L 3 - 8 0 ................................. 69 9. F i b e r Content in 25 Grams o f Baked Root Tissue in each o f two Seedlings o f L3-77 x Kandee Progeny. Seedling w it h Lowest F i b e r Content ( L e f t ) and Seedling wit h Highest Fi ber Content ( R ig ht ) ............................................................ 103 F i b e r Content in 25 Grams o f Baked Root Tissue in each o f two Seedlings o f 0K51 x L 131 - Seedling w it h Lowest F i b e r Content ( L e f t ) and Seedling w i t h Highest F i b e r Content ( R i g h t ) .................................................. 105 10. vi i ABSTRACT The Fj progenies of 21 d i f f e r e n t combinations in vo lv in g 14 sweet po ta to breeding parents were grown a t Chase, Louisiana in 1964. roots of each seed ling were harvested September 16, to M is s is s ip p i State U n i v e r s i t y , 1964, t ra nsp or te d cured, stored and e va lu a te d . roots were ev a lu a te d f o r shape, smoothness, carotene c o n t e n t ) , c o r t e x t hic kne ss , dry m a t t e r , were baked and ev al ua ted f o r fir m nes s, The (total and skiri c o l o r . The raw pigment The roots c o l o r , moistness, sweetness, f l a v o r and f i b e r . Shape as d e t e r m i n e d by the be a h e r i t a b l e c h a r a c t e r . genes c o n t r o l l i n g (L:W) r a t i o appeared t o Transgressive segregation occurred. t h i s c h a r a c t e r appeared a d d i t i v e absence o f dominance. tro llin g le n g th iw id th The in e f f e c t w i t h the There was no i n t e r a c t i o n between genes con shape o f th e r o o t s and number o f r o o t s per p l a n t . The progenies were ev a lu a te d f o r surface smoothness as an e s t i mate of freedom from v e in in g and cr a c k in g . Ve ining and possible causes of c r ac ki ng were discussed. The genes c o n t r o l l i n g c o r t e x thickness segregated tr a n s g r e s s iv e manner in each progeny. in a t y p i c a l l y This ch a ra c t e r appeared to be c o n t r o l l e d by a r e l a t i v e l y few genes w it h simple a d d i t i v e e f f e c t s . The genes f o r dry m a t t e r content segregated t r a n s g r e s s i v e l y . There were in each progeny s e e d l i n g s h i g h e r t h a n th e h i g h e s t p a r e n t and lo we r t h a n th e lowe st p a r e n t . G e n e r a l l y t h e progeny mean was lo we r than t h e mean o f th e two p a r e n t s . vi i I I t was conc lud ed t h a t d r y ma tter was a q u a n t i t a t i v e ch a ra c t e r c o n t r o l l e d by several ing dominance but a d d i t i v e genes la ck in e f f e c t . In most progenies the mean f o r carotene c l o s e l y approached the mean of the two pa re n ts . Carotene content was a q u a n t i t a t i v e charac t e r and segregated t r a n s g r e s s i v e 1y. additive The genes, probably 6, were in e f f e c t w it h dominance absent and i n h i b i t o r or e p i s t a t i c e f f e c t s were suggested. C o r r e l a t i o n s of carotene con ten t of roots w it h c e r t a i n o th er ch ara ct ers were shown and discussed. In a l l greater progenies the female parent appeared to have e xe rte d a i n flu en c e on skin co lo r than did the male p a r e n t . c o n t r o l l i n g t h i s ch a ra c t e r segregated t r a n s g r e s s i v e l y . were involved and appeared a d d i t i v e in e f f e c t . The genes Several genes The presence of an i n h i b i t o r , or one or more complementary genes was i n d i c a t e d . Color intensity in the baked root was shown to be c l o s e l y c o r r e lated to the carotene content as determined chromatographica1l y . U n if o r m it y o f c o l o r appeared to be a g e n et ic t r a i t c o n t r o l l e d by a small number o f genes w it h a t least p a r t ia l dominance. Moistness of the baked roots reacted as a q u a n t i t a t i v e c ha ra ct er c o n t r o l l e d by several genes segregating t r a n s g r e s s i v e l y . Dominance was not e v i d e n t ; an a d d i t i v e e f f e c t was suggested. The data ind ic at ed t h a t good or su pe rio r f l a v o r and sweetness were recessive c h a r a c t e r s . Very few i n d i v i d u a l s in any progeny pos sessed a f l a v o r su pe rio r to t h a t o f the more d e s i r a b l e parent but many i n d iv id u a ls were i n f e r i o r to the poorer p a r e n t. A close p o s i t i v e c o r r e l a t i o n was found between f l a v o r and sweetness. A pos sible asso c i a t i o n w it h one or more enzyme systems as conversion f a c t o r s during baking was suggested. Firmness appeared to be a q u a n t i t a t i v e c h a r a c t e r c o n t r o l l e d by several genes segregating t r a n s g r e s s i v e l y . The high p o s i t i v e correla tions between firmness and carotene and /or moi.stness and the negative c o r r e l a t i o n between firmness and dry m a t te r ind ic at ed t h a t may e x i s t . A close c o r r e l a t i o n was shown between t o t a l and siz e of the i n d i v i d u a l involved. A small group, linkages f i b e r content f i b e r s but two d i s t i n c t sets o f f a c t o r s were probably not more than 2 p a i r s , of genes w ith simple dominance c o n t r o l l e d s i z e but t o t a l f i b e r content was c o n t r o l l e d by several genes, geometric in e f f e c t and link ed w ith those f o r s i z e . The baking index was obtained as the average score o f the q u a l i t y components. This study has shown t h a t baking q u a l i t y t r a i t c o n t r o l l e d by a complex of ge n eti c ch a ra c t e r s . x is a h e r i t a b l e INTRODUCTION The pop ulation o f the United States and the world has grown q u i t e r a p i d l y in the past 50 yea rs . unchecked, the United Stat es w i l l bout 60 years rate. I f the pop ulation explosion continues (9). double the present pop ulation in a- The world pop ulatio n is growing a t an even f a s t e r In several areas of the world major food shortages are causing severe famines and m a l n u t r i t i o n w ith the people involved. i t s accompanying i l l e f f e c t s on In the not too d i s t a n t f u t u r e the United States could be faced w it h the problem of f ee di ng a hungry n a t i o n . The sweet p ot at o, (Ipomoea ba t a t a s ) a n a t i v e o f T r o p i c a l America and the West I n d ie s , may become i n c r e a s i n g l y more important as a source of food. drat es I t has been used f o r many years as a r i c h source of carbohy in t r o p i c a l and s u b - t r o p i c a l co u nt ri es o f the world (25, This crop is w el l adapted to the c l i m a t i c con di tio ns e x i s t i n g 103). in large areas of the southern Un ite d Stat es and c e r t a i n e a r l i e r producing v a r i e t i e s are grown as f a r north as southwestern Michigan and along the A t l a n t i c Coast i n to New Jersey and neighboring areas. It is the most important veg etable crop o f the southern United St at es both in acreage and monetary value. The economic p r o s p e r i t y and abundant food supply of the United Stat es have enabled the American consumers to place more emphasis on the demand f o r a highe r q u a l i t y food product. in 1937 a t M ille r's (70) success inducing the sweet potat o to bloom and set seed in the United Stat es opened the door to a vast breeding program aimed at 2 improving the y i e l d and q u a l i t y o f t h i s crop. Carotenoid pigments, p a r t ic u la r ly beta-carotene, gives the y e l l o w c o l o r to the f l e s h of the sweet p o t a t o root and is found in va r y in g co n ce n t r a ti o n s imp ortant in most sweet p o t a t o v a r i e t i e s . B e ta -c a ro te n e is ver y in the d i e t o f man as a precursor o f v i ta m i n A which is so necessary f o r good h e a l t h . The success of the breeding program in im proving the q u a l i t y o f sweet potatoes is a t t e s t e d by newer v a r i e t i e s w i t h much hi gh er ca ro te ne content than the o l d e r ones ( 7 3 ) . Q uality factors. ter, is c o n t r o l l e d by a complex of g e n e t i c Some o f these ch a ra c t e r s such as carotene c o n t e n t , dry mat fib e r, Others, in the sweet potat o firmness and root shape may be measured by o b j e c t i v e means. such as smoothness, u n i f o r m i t y , moistness, f l a v o r and sweet ness must be ev a lu a te d s u b j e c t i v e l y and is strong personal infl ue nc ed pr ef e r e n c e s . This study was i n i t i a t e d t o determine the mode o f root shape, f i b e r c o n t e n t , pigments in some cases, (ca ro te ne ) skin c o l o r , dry m a t t e r , i n h e r i t a n c e of total ca r o t e n o id and o t h e r f a c t o r s c o n t r i b u t i n g t o a high y i e l d and good baking q u a l i t y in the sweet po ta to . by REVIEW OF LITERATURE E a r l y Hi s t o r y The sweet potat o is n a t i v e of the New World having o r i g i n a t e d the t r o p i c a l 103). times and s u b - t r o p i c a l areas of Central According to Cooley ( 2 5 ) , and South America (25, i t was used f o r food in p r e h i s t o r i c in the t r o p i c a l Americas and some of the P a c i f i c is evidence t h a t in Is la nd s. There i t was introduced in to New Zealand p r i o r to the Spanish e x p l o r a t i o n s but i t was not known to the a n c ie n t c i v i l i z a t i o n s of As ia , A f r i c a and Europe. Columbus found the n at iv es o f Cuba using the sweet potat o f o r food and i t is g e n e r a l l y b e l i e v e d he c a r r i e d i t to Europe probably on his f o u r t h voyage. The sweet p o t a t o , Ipomoea b a t a t a s the C o n v o lv u la c e a e f a m i l y t h a t f o o d f o r man (51, 103). (L.) LAM., is o f m a jo r im p o r t a n c e as a source o f K i n g and Bamford (61) i n d i c a t e d t h a t th e sweet p o t a t o in t h e i r s tu d ie s in 1937 i s an e x t r e m e l y h e t e r o z y g o u s f i e x a p l o i d w i t h a s o m a t ic chromosome number o f 90. T i n g and Kehr (10**) suggested t h a t th e sweet p o t a t o was an a l l o p l o i d o f m u ltiv a le n ts , i s th e o n l y member o f in o r i g i n . in 1953 The absence t h e presence o f secondary a s s o c i a t i o n s and t h e h i g h number o f chromosomes in th e sp e c i e s were used as e v i d e n c e a t t h e i r theory o f a l l o p l o i d o r i g i n . in a r r i v i n g They b e l i e v e d the sweet p o t a t o a ro se as a h y b r i d between two unknown s p e c i e s , one a t e t r a p l o i d and th e o t h e r a d i p l o i d and the n a t u r a l d o u b l i n g o f t h e chromosomes o f t h i s b r i d gave r i s e t o t h e modern sweet p o t a t o , able. but t h i s is s t i l l A number o f w o r k e r s have r e p o r t e d on a t t e m p t s a t hy question in te rs p e c ific 4 hybridization in the genus but no one has been succesful as y e t . The sweet po ta to has been an important food crop f o r many years. It is c r e d i t e d w ith saving the Japanese from famine on several occasions and s i m i l a r commendations are bestowed upon i t by a number of ot her countries. According to Thompson (103) the sweet po ta to is a standard a r t i c l e of food in the southern United S t a t e s . place He ranks i t in importance as veg etable crop in the United S t a t e s . important food crop in a l l sub-tropical in fo u r th It is an c ou nt r ie s of the world having a t r o p i c a l or c l im a t e and production extends w el l i n to the temperate area . To ta l Carotenoid Pigment E a rl y workers (13, (Carotene) Inheri tance 16, 25, 26, 31, ^8, 50, 60, 68, 72) w i t h the crop re por te d on the wide range o f d i f f e r e n c e s among v a r i e t i e s c o l o r of the f l e s h . w ithin a v a rie ty , Some have reported on the occurrence of mutations, f o r f l e s h c o l o r and t h i s has been used to advantage in v a r i e t y development programs. The p r i n c i p a l pigment responsible f o r f l e s h c o l o r has been i d e n t i f i e d as b e t a - c a r o t e n e (32) i d e n t i f i e d several o t h e r pigments (32). E z e l l and Wilcox in sweet potatoes; accounted f o r not more than 10 per cent of the t o t a l Furthermore, in the pigments present. they reported the r a t i o of carotene to t o t a l came wider as the i n t e n s i t y of the ye l l o w c o l o r however, they pigments be increased, but i t va r i e d among v a r i e t i e s . Numerous environmental e f f e c t s upon the carotene content of sweet po t at o roots have been r e po r te d. Covington (26) found t h a t the caro tene content was infl uen ce d by tem pera ture , f e r t i l i z e r s , s o i l m oistu re, storage co n d it io n s and h e i g h t of rid ge on which the p l a n t s were grown. Covington (26) al s o reported a s i g n i f i c a n t p o s i t i v e c o r r e l a t i o n between height of ridge and carotene c o n te n t. The data of Edmond, e_t aj_ (31) i n d i c a t e a tendency in t h i s d i r e c t i o n . Burton ( 1 8 ) , studied the in flue nce o f v a r i e t i e s and storage p r a c t i c e s on the q u a l i t y of sweet potato c h i p s . t re a t m e n t. He noted an increased carotene content from a preheat A number o f ot her workers (40, 41, 43, 44, 5 5 - 6 0 , 72, 92, 95) have i n di c at ed t h a t the carotene content however, i t should be noted t h a t these son to the t o t a l increased during storage; increases were small in compari amount of pigment pr ese nt. Several workers have discussed at various times and under d i f f e r e n t environmental c on di tio ns an e f f e c t o f p l a n t i n g date on the carotene con tent. As might be expected in a p l a n t as heterozyous as the sweet pota to and as markedly influenced by environment as I t seems t o be, much of the data on the e f f e c t of p l a n t i n g date is in d i r e c t c o n f l i c t . (33) Fong in 1951 re por te d t h a t e a r l i e r p l a n t in g s were higher in carotene than l a t e r ones. in t h a t This was a l s o suggested by the work of Gaafar (34) longer l i g h t exposure increased the carotene and sugar content of roots. Kimbrough, et_ aj_ (60) were unable to f i n d any c o r r e l a t i o n s between p l a n t i n g date and c o l o r . Anderson and his associates ( 2 , 3» 4, 5) made number o f r a t h e r d e t a i l e d stu die s of the e f f e c t s of p l a n t i n g date on the r o o t s . In one season (1941) they noted a tendency toward an e a r l y p l a n t i n g - high carotene a s s o c i a t i o n Hines (50) suggested t h a t the area o f production in flu enc ed marked ly the exp ression of a number o f ch a ra ct er s flesh. (6). Reddy (85) flesh color. i nc lu din g the c o l o r o f the report ed a s i g n i f i c a n t e f f e c t o f production area on Jenkins and his co-workers observed a marked d i f f e r e n c e in the c o l o r o f canned roots o f a v a r i e t y when grown in d i f f e r e n t areas of Mississippi. Massey e t aj_ ( 6 7 ) reported s i m i l a r r e s u l t s in raw roots 6 of sweet potatoes grown in d i f f e r e n t l o c a t io n s in V i r g i n i a . This is f u r t h e r supported by the work o f Hammett (41) w i t h canned sweet pota toes in which he found d i f f e r e n c e s very s i m i l a r t o those of Jenkins. In a d d i t i o n , he re po rt ed a h i g h l y s i g n i f i c a n t i e t i e s and l o c a t io n s f o r ments. i n t e r a c t i o n between v a r f l e s h c o l o r and most o t h e r q u a l i t y Stevenson and Akeley (101) working w it h potatoes and Janes working w i t h cabbage and beans found s i m i l a r responses t h a t a t tr ib u t e to no v a r i a b l e o t h e r than pr odu ction There is e vi de n ce , although much o f it fe rtiliz e rs on the c o l o r o f the roots as e a r l y as 1941 failed Samuels and Landrau that Covington recorded an e f f e c t of re po rt ed s i m i l a r r e s u l t s in his e f f o r t s they could is c o n t r a d i c t o r y , influence fle s h color. Rico as did Janes (52) (52) location. fe rtiliz e rs e t aj_ (31) measure (26). Edmond in t h e i r work w it h the U n it in hi s work w i t h o t h e r v a r i e t i e s . I Porto Reddy (85) to associate fle s h color w ith f e r t i l i z e r s . (89) stated that " f e r t i l i z e r s increased carotene content o f the roots only when they increased the y i e l d s i g n i f i c a n t l y but t h a t in c r e a s i n g the s o i l ment c o n c e n t r a t i o n " . pH above 4 . 5 did increase the y e l l o w pi g The in fl u e n c e o f f e r t i l i z e r s , pH and s o i l moisture on the c o l o r and processing q u a l i t y o f a wide v a r i e t y of h o r t i c u l t u r a l crops has been re ported from time to t im e. I t was recognized soon a f t e r the breeding program was begun th a t c o l o r o f the f l e s h was a h e r i t a b l e t r a i t . M i l l e r and Covington (72) s t a t e d as e a r l y as 1942 t h a t ------ " a l th o u g h the carotene content may be changed by c u l t u r a l method o f tre atme nts and environmental in cr e a s i n g the carotene s t ud ie s on the factors is h y b r i d i z a t i o n " . the best One o f the e a r l y i n h e r i t a n c e o f carotene was conducted by Hernandez ( 4 8 ) . He found the sweet po t at o t o be very heterozygous f o r t h i s and o t h e r 7 c ha rac te rs which included vine roo ts , length and c o l o r , l e a f shape and m a t u r i t y dat e. skin c o l o r o f the M i k e l l ejt aj_ (68) suggested th at both skin and f l e s h co lo r were c o n t r o l l e d by m u l t i p l e genes plus the possible presence of complementary f a c t o r s . c o l o r was " i n h e r i t e d dihybrid in a complex manner and segregated as a dependent in e i t h e r a 9 :7 or 13:3 r a t i o " ; o b t a i n in g a good f i t Poole (84) proposed f l e s h fo r this r a t io . however, he had d i f f i c u l t y in He concluded t her e was both a dominant and recessive orange f l e s h and t h a t f l e s h and skin c o l o r were l in k e d . Hernandez ( 4 9 ) , working w it h d i f f e r e n t populations came to the conclusion th a t white f l e s h is incompletely dominant over orange f l e s h . He e x p la in ed the r a t i o he obtained as being due to the e p i s t a t i c act ion of two or more w hi te genes over genes f o r orange f l e s h or the possible presence o f an i n h i b i t o r gene. He proposed t h a t s i x genes a c t i n g an a d d i t i v e manner c o n t r o l l e d f l e s h c o l o r . He also reported a h ig hl y s i g n i f i c a n t c o r r e l a t i o n between skin and f l e s h c o l o r . found f l e s h c o l o r was i n h e r i t e d q u a n t a t i v e l y and was c o n t r o l l e d by several in Constantin (24) in a t r a n s g r e s s iv e manner genes e i t h e r a d d i t i v e or geometric in ac t i o n . Skin Color A number of the e a r l y works recorded v a r i e t a l c o l o r o f the sweet potato roots (5, differences 16, 31, 41, 48, 51, 6 8 ) . in skin These d i f f e r e n c e s have ranged from a l i g h t cream or wh ite to a very dark purr pie. D e s c r i p t i v e terms used in d e s c r ib i n g the skin c o l o r v a r i e s wide ly among i n d iv id u a l workers and from region to regi on. These d i f f e r e n c e s among workers and loc at io ns make i t very d i f f i c u l t to be sure t h a t differences in skin co lo r ar e due to l o c a t i o n e f f e c t s ; however, there 8 are some repo rt s in which one worker had made observations o f samples o f a given v a r i e t y from several production ar eas. Luh (66) working w i t h pear f r u i t s described such l o c a t io n e f f e c t s on the f r u i t c o l o r . Hines (50) in 19^+9 and Hammett (41) in 1962 described skin c o l o r d i f f e r e n c e s w i t h i n a given v a r i e t y of sweet potatoes when I t was grown in d i f f e r e n t locations. g r e a t e r than v a r i e t a l D if fe r e n c e s due to l o c a t io n were f r e q u e n t l y differences. Hernandez* study (48) one o f the f i r s t attempts to e x p l a i n v a r i e t a l color. differences in 1942 was in skin Poole (84) found skin c o l o r to be c o n t r o l l e d by two genes t h a t were linke d w i t h the genes f o r f l e s h c o l o r . Hernandez (49) reported skin c o l o r was a q u a n t i t a t i v e c h a r a c t e r as opposed t o Poole's conclu sion t h a t I t was a q u a l i t a t i v e c h a r a c t e r . Hernandez (49) f u r t h e r pro posed the presence o f two complementary genes and po ss ib ly a t h i r d gene basic f o r c o l o r . linked. tive ly tary Constantin He al so concluded t h a t f l e s h and skin co lo r were (24) s t a t e d , " s k i n c o l o r appears t o be q u a n t i t a i n h e r i t e d w it h several i n t e r a c t i n g genes, probably complemen in a c t i o n . . . . p u r p le skin c o l o r appeared to be p a r t i a l l y dominant over the o t h e r skin c o l o r s " . Dry M at te r H a s s e l b r i n g and Hawkins (43, 44) not ed v a r i e t a l t h e d r y m a t t e r c o n t e n t o f sweet p o t a t o e s . S i s t r u n k and c o - w o r k e r s (75, 76) have r e p o r t e d v a r i e t a l p u b l i s h e d d a t a showing a wide range o f v a r i a t i o n 12, 14, and s e e d l i n g s . 15, 20, 52, 53, 57, 82, 8 5 , 96, in Boswell ejt a_[ (16) and in d r y m a t t e r o f sweet p o t a t o e s and o t h e r c r o p s . sweet p o t a t o v a r i e t i e s differences differences M i l l e r , _e_t _aj_ (73) in d r y m a t t e r o f Numerous o t h e r w o rk er s 108, (1, 111) have a l s o shown 11, 9 varietal differences in dry m at te r content o f sweet potatoes and a number o f ot her crops. These crops include such pl ant s as beans ( 5 2 ) , cabbage ( 5 2 ) , cantaloupe (2 7 , 11*0, c a r r o t s (7), pear (63, 3 10) and strawberry mong these crops and sweet potatoes on v a r i e t a l variation (111). ( 2 0 ) , potat o ( 1 1 ) , radish The g r e a t e s t s i m i l a r i t y a- is the consistency of the reports in dry mat ter co n te n t. However, f a c t o r s other than v a r i e t y have been shown t o in flu en ce the dry m at ter con ten t. Robbins e_t a_l_ ( 87) concluded in 1929 t h a t f e r t i l i z e r s m at ter in sweet potatoes. Reddy (8 5 ) reported in 1952 t h a t he was un able to f i n d such an infl uen ce in his work; w i t h sweet potatoes tween f e r t i l i z e r s workers tatoes. infl uen ce dry however, oth er workers (5 , 21, 3 1 , 79, 80) have re ported c o r r e l a t i o n s be and dry m a t te r con ten t. Jasmin ejt aj_ (53) and other (11, 82, 88) have found an in flu en ce due t o f e r t i l i z e r s Janes (52) reported a f e r t i l i z e r e f f e c t in po in cabbage and beans but he found a much g r e a t e r e f f e c t due to the area o f production. Boswell and his co-workers area o f production, (16) found s i g n i f i c a n t d i f f e r e n c e s due to season and v a r i e t i e s w it h sweet pot ato es. r e s u l t s were reported by Hammett in M is s i s s i p p i Virg in ia (67) . (41) and Massey in S i s t r u n k (96) working w it h beans, found d i f f e r e n c e s dry m a t t e r a f f e c t e d by mulches, Peterson Sim ilar i r r i g a t i o n and v a r i e t i e s . in C a rl t o n and (20) were able to increase the dry m at ter content of ca r r o t s by f o l l o w i n g a program of s e l e c t i o n and inbreeding. Peterson ( 8 2 ) , P l a i s t e d and r e p o r t i n g on t h e i r work w i t h potatoes concluded, a f t e r two cycles of r e c u r r e n t s e l e c t i o n , t h a t the program was e f f e c t i v e as a means of increas ing the s p e c i f i c g r a v i t y . Stevenson and Akeley (101) On the o th er hand, reported t h a t environmental f r e q u e n t l y g r e a t e r than v a r i e t a l responses. responses were Hernandez (49) found dry 10 m a t te r in sweet potatoes was i n h e r i t e d in a t ra ns gr es si v e manner and t h a t a h i g h l y s i g n i f i c a n t neg ative c o r r e l a t i o n e x i s t e d between dry m a t te r and caro ten oid pi gm entation. The r e s u l t s obtained by Constantin (24) c l o s e l y supported those of Hernandez. Shape and Smoothness Shape in the sweet p o t a t o , as determined by the le ngt h: wid th (L:W) r a t i o and smoothness or freedom from v e i n s , o r o th er growth defects such as large l a t e r a l rid ges , cracking feed roots probably in f lu e n ce the consumer-purchaser o f f re sh sweet potatoes more than any other fa c t o r . In general sweet po ta to es, w ith a L:W r a t i o of about 2, f r e e of smoothness defec ts seem t o be the type p r e f e r r e d f o r most f re s h markets. The i n flu en c e o f c u l t u r a l and environmental f a c t o r s on the shape of sweet po t at o roots was studied by a number o f e a r l y workers. Robbins et_ aj_ (®7) reported t h a t potassium was necessary f o r p r o t e i n synthesis and development of storage t is s u e and th e r e f o r e is e s s e n t i a l f o r production of roots w i t h low L:W r a t i o s . (116) associated shape w i t h both ni tr o g e n and potassium. Zimmerly M i l l e r and Kimbrough (69) and Edmond (30) found a very marked influence of date o f p l a n t i n g on shape o f the r o o t s . Edmond and co-workers (30, 31) noted t h a t p l a n t i n g date and he ig ht of ridge influenced shape. Anderson (2, 3) report ed th a t n itr og en and potassium had no e f f e c t on the shape o f Triumph sweet potatoes but he did in d ic a t e t h a t s o i l may have some e f f e c t . (50). type This was supported in p a r t by the work of Hines Anderson and his asso cia tes spacing and rid ge he ig ht (4, 5> 6) found p l a n t i n g d at e, influenced the shape o f the ro ot s. s t a t e d t h a t the l a t e r the p l a n t i n g d a t e , They the w ide r was the L:W r a t i o . 11 Angel 1 and Hi 1 I y e r dish ro ot s. (7) studied the photoperiod response of r a They found a very marked v a r i e t a l response in diameter, weight and number of days requi re d to reach marketable s i z e . (22) t h e o r i z e d t h a t some p l a n t growth substance t h a t Chapman is produced under sh o rt day con ditions was necessary f o r tuber for ma tion in potatoes. Several workers f e c t s o f temperature In general (22, 81, 88, on tuber 109, 115) have reported on the e f f or m a tio n, y i e l d , and shape o f potatoes. they found t h a t higher temperatures had adverse e f f e c t s on both shape and y i e l d . on pot at oes . Went (109) al so discussed temperature e f f e c t s He suggested some p l a n t growth substance as being re sponsible f o r the e f f e c t s . Audus (10) and Leopold (6U) have e l a b o r a t ed on t h i s po in t as i t was influenced by both temperature and dayle ng th . Jenkins (5*0 reported t h a t long days and r e l a t i v e l y high temperatures were necessary f o r bulb fo rmation in s h a l l o t s . Chipman (23) found t h a t e a r l i e r harvested c a r r o t s had b e t t e r shape than those harvested l a t e r in the season. Yamaguchi ejt aj_ (115) working w it h po ta to es, found the s o i l temperature had a pronounced e f f e c t on smoothness o f the tub ers. Those grown a t *+5- 50° F. were very smooth w h il e tubers grown at BO SS0 F. were extremely rough and d i s t o r t e d . (88) working at s l i g h t l y d i f f e r e n t soil Ruf temperatures reported very s i m i l a r r e s u l t s . Nusbaum (78) s ta te d t h a t boron d e f i c i e n c i e s caused rough, misshapen and cracked roots workers in the Porto Rico v a r i e t y . Paterson and his co (79, 80) report ed t h a t growing sweet potatoes 2 years in succession on the same land r e s u l t e d in severe y i e l d reductions due t o the presence o f rough, s e v er ly cracked and misshapen r oo ts . and M i l l e r (97) proposed t h a t a " q u a n t i t a t i v e Skoog i n t e r a c t i o n among growth 12 substances is the means f o r r e g u l a t i n g a l l types of growth. Morpho gen etic e f f e c t s e x i s t but they may be a l t e r e d by the s u b s t i t u t i o n of one or more growth substances". Cortex Hayward (46) described the co r t e x as the l a y e r o f parenchymatous cells located between the cambium and periderm. i d e n t i f i e d the co r t e x as the t is s u e the endodermis and the epide rm is . several t o many c e l l s . that in pot atoes, (s) Smith e t aj_ (99) l yi n g between, and in cl u d in g , The co r t e x v a r i e s Yamaguchi and his co-workers the co r t e x was t h i c k e s t the highest temperature. in thickness from (115) reported in those tubers grown at On the ot her hand, they found the i n d iv id u a l c e l l s o f the co rt ex were s m a l le r , thicker-w alled in tubers grown a t the lowest temperature in a s e r i e s o f t e s t s where the soi l ranged from 4 5 - 5 0 ° F. temperature to 8 0 - 8 5 ° F. Q.ual ?tv For sensory e v a l u a t i o n of food products Sather and Ca lv in suggested t h a t (90) in mi I d - f l a v o r e d products up to 20 samples may be in cluded in one t e s t period w it h o u t of the t e s t panel. impairing the e f f i c i e n c y or accuracy Dawson (28, 29) al so favored a t e s t of t h i s type which he termed a " M u lt ip le - S a m p le " comparison t e s t and he l i s t e d a number o f d i s t i n c t advantages o f the method. l i s t e d are: additional Among the advantages he a) detec ts sm al le r d i f f e r e n c e s between samples; b) gives information about the d i r e c t i o n and importance o f the d i f f e r e n c e s ; c) requ ir es fewer samples and less time; and d) is more e f f i c i e n t when panels have not been s p e c i a l l y se le c t e d or t r a i n e d . Dawson (28, 29) f u r t h e r suggested t h a t "numerical scoring of 13 samples is a p p l i c a b l e when the d i f f e r e n c e s can be predetermined and arranged on a nu m er ic al ly graduated sca le. method over a simple ranking method than the ot her Q uality although one was no more e f f i c i e n t in d e t e c t i n g d i f f e r e n c e s , ed degrees of d i f f e r e n c e s in the sweet but the scoring method i n d i c a t t h a t were not shown by ranking. po ta to is a complex of f a c t o r s and is depen dent upon many c o n t r i b u t i n g c h a r a c t e r s , ence of the i n d i v i d u a l . He p r e f e r r e d the scoring inc lud ing the personal p r e f e r Although a number of f a c t o r s are known to a f f e c t the q u a l i t y of the sweet p o t a t o , the e x t e n t to which the in d iv id u a l components a f f e c t the q u a l i t y o f the baked roots is not known. Morris and Mann (7*0 st at ed t h a t the Porto Rico was c o n s i s t e n t l y ra ted higher than oth er v a r i e t i e s ness showed l i t t l e chemical a n a l y s i s . in e a t i n g q u a l i t y by a t a s t e panel: however, sweet o r no r e l a t i o n to sugar content as determined by Constantin ( 2k) found soluble s o l i d s (sugar content) were associated w i t h several o t h e r q u a l i t y measurements, however, he s t a t e d , "The magnitude of the c o r r e l a t i o n c o e f f i c i e n t s , although s t a t i s t i c a l l y s i g n i f i c a n t , was too low to be of any p r a c t i c a l va lu e" . S c ot t and Matthews m a t te r , (92) found d i s t i n c t v a r i e t a l differences in dry starch and sugar content o f sweet potato roots at the time of harvest and during the storage p e r i o d . that total S i strunk e_t _a_l_ (95) reported sugars In f re sh sweet potatoes seemed to have l i t t l e e f f e c t on the t o t a l sugars in the cooked roots. They found no d i f f e r e n c e s in the f re sh roots among the v a r i e t i e s t es te d w i t h the exception of Queen Mary, but Porto Rico converted the highest percentage of reducing sugars during baking. Hammett and B a rr e n ti n e (**0) and Jenkins and Gieger (57, 58) have a l s o shown marked v a r i e t a l differences in sugar conversion during baking and in each t e s t Porto Rico had the highest 14 conversion ra te . Numerous workers have in v e s t i g a t e d the influence of v a r i e t y and production locations on the q u a l i t y of various f r u i t and vegetable crops. Ba rri os £ t a_l_ (11) noted mealiness as one o f the f a c t o r s a f f e c t ing q u a l i t y in the p o ta to . and siz e o f the i n d iv id u a l They found c e l l size, total starch content sta rc h grains to be c o r r e l a t e d to the m e a l i ness r a t i n g of the potatoes and these c h a r a c t e r i s t i c s were st r o n g l y fluenced by v a r i e t y and environment. Jasmin and his co-workers in (53) re ported s p e c i f i c g r a v i t y and b o i l i n g q u a l i t y o f potat o tubers were ad v e r s e ly a f f e c t e d by heavy a p p l i c a t i o n s of f e r t i l i z e r s . Stevenson and Akeley (101) st at ed t h a t environmental e f f e c t s were of te n g r e a t e r than varietal differences in determining potato chip q u a l i t y and t h a t a strong v a r i e t y - e n v i r o n m e n t i n t e r a c t i o n was p r e v a l e n t . D a v is , Baker and Kasmire Louisiana, lou pes . (27) in C a l i f o r n i a , and Woodward (114) in s t u d i e d some o f the q u a l i t y f a c t o r s o f muskmelons and c a n t a They noted a number o f v a r i e t y and e n v i r o n m e n t a l influences t h a t were c o r r e l a t e d b u t t h e y were unable t o f i n d a c o n s i s t e n t c o r r e l a t i o n w i t h t h e q u a l i t y o f the f r u i t . The C a l i f o r n i a r e p o r t n ot ed wide v a r i a t i o n s among i n d i v i d u a l melons from a s i n g l e s i t e and between any two s i t e s . Hall They concl uded t h a t t h e p o p u l a t i o n s were v e r y h e t e r o z y g o u s . ( 3 9 ) , w o r k i n g w i t h toma toe s, found f i r m n e s s t o be a v a r i e t a l r a c t e r i s t i c not associated w ith rip e n in g . Pinthus (83) ly s ig n if ic a n t v a rie ty diffe re n ce s in wheat k e r n e l t e i n c o n t e n t and endosperm c o l o r . W i l l i a m s ejt aj_ (112) r i c e q u a l i t y and r e l a t e d it size , t o th e s t a r c h f r a c t i o n s . cha r ec or de d h i g h ha rd ne ss , p r o investigated They r e p o r t e d a v e r y c l o s e c o r r e l a t i o n between th e s t a r c h f r a c t i o n expressed as amylose o r a m y l o p e c t i n and the g r a i n le ngth. Luh and h i s c o - w o r k e r s (66) reported t h a t q u a l i t y of canned pears was r e l a t e d to the growing area. W ile y and Thompson (110) found t h a t v a r i e t y , storage con ditio ns and ma t u r i t y had a marked infl ue nc e on the q u a l i t y of canned apples. e t aj_ (111) noted v a r i e t a l ty. and seasonal d i f f e r e n c e s They al s o reported a v a r i e t y - s e a s o n o f the f r u i t . cultural in strawberry q u a l i interaction a ffe ctin g quality S i s t r u n k and his co-workers cal and physical ( 96) found th a t both chemi p r o p e r t i e s of beans were a f f e c t e d by several p r a c t i c e s , and Janes (52) e f f e c t than the v a r i e t y . Jenkins Wolford common found th a t environment had a g r e a t e r (59) reported v a r i e t a l differences in the q u a l i t y c o n s ti t u e n t s of southern peas and a l s o a very pronounced varietal difference in r a t e of change in these c o n s ti t u e n t s f o l l o w i n g harvest. A number of workers have i n v e s t i g a t e d the e f f e c t of c u l t u r a l and handling p r a c t i c e s on the q u a l i t y o f sweet potatoes. t or s have reported on the infl ue nc e of c u r i n g , Several investiga s t o r i n g , cooking tempera t ur e and cooking time on the q u a l i t y of baked sweet potato roots 43, k k , 57, 58, I k , 8 5 , 92, 9 5 ) - In general (*t0, they have shown t h a t cu r ing improves the e a t i n g q u a l i t y o f the roots and most v a r i e t i e s continue to improve f o r a time in storage. In the pas t, curing periods of up to 15 days have been recommended but c u r r e n t recommendations are f o r k to 6 days o f curing a t 85° F. when harvested during warm weather ( 8 ) . ing, Cur to enhance the h e a li n g of wounds, combined w it h storage a t 55° to 6 0 ° F. and high r e l a t i v e humidity has been shown to be conducive to c e r t a i n changes which occur in the carbohydrate content of the sweet p ot at o. There was an increase in t o t a l ing and f o r the f i r s t s ta rc h con ten t. Hines and reducing sugars during c u r 3 months o f storage coupled wit h a decrease (50), Jenkins e_t a_l_ ( 5 7 ) , Massey and his in 16 co-workers (67) and Hammett (40) working independently have shown a close c o r r e l a t i o n between the area of production and the q u a l i t y of baked and/or canned roots. Baumgardner and Scott ness of processed sweet potatoes. (12) studied the f i r m They were able to infl uen ce the f i r m ness of a given v a r i e t y by simply va ry ing the holding temperature of the f r e s h l y harvested root s, Jenkins (57) reported t h a t the q u a l i t y o f the baked roots was influenced by the temperature and du r a t i o n of the baking process. He concluded t h a t baking the roots f o r 90 minutes a t 350° F. was more f a v o r a b l e f o r a high q u a l i t y product than baking f o r sh o rte r periods a t highe r temperatures. Ali (1) st a t e d th a t 375° F. f o r 75 minutes was b e t t e r than lower temperatures. Several workers have reasoned t h a t q u a l i t y te ris tic is a h e r i t a b l e charac in the sweet potat o although t h e i r data to support such a con c l us io n were very l i m i t e d (1, 24, 49, 67, 68, 106). A number o f workers have considered from one to a very few of the q u a l i t y f a c t o r s . The p r i n c i p a l ones considered have been carotene and dry m at ter con ten t. The work of Hernandez (49) and of Constantin most comprehensive on o v e r a l l q u a l i t y and I t s (24) has perhaps been the inheritance. was concerned p r i m a r i l y w i t h carotene and dry matter in the area of ch ara ct ers g e n e r a l l y considered as a f f e c t i n g e a t i n g q u a l i t y . (24) Hernandez Constantin studied carotene and solu ble s o li d s and baking q u a l i t y as measured by a baking index. Color, f l a v o r , texture, f ib e r, ness were considered as components o f q u a l i t y sweetness and moi st in the baked roots and each component was assigned a maximum value of 10. He s u b j e c t i v e l y r ated the i n d iv id u a l seedlings f o r each f a c t o r and obtained a baking index as an average o f the scores f o r the various components of q u a l i t y . The data of Hernandez (49) and Constantin (24) did show t h a t q u a l i t y is 17 a strongly h e rita b le character. Baumgardner (2) and others (40, $2) have suggested t h a t po s si b ly p a r t o f the q u a l i t y complex was i n h e r i t e d as an enzyme system capable o f br i n g in g about desired star ch conver sions or ot her changes under f a v o r a b l e co n d it io n s . F i ber One of the q u a l i t y c h a r a c t e r i s t i c s of the sweet potat o t h a t was r e cognized e a r l y in e f f o r t s the f l e s h y roots (13, to improve the crop was the f i b e r content of 10 6) . Fiber in the sweet potat o root is due to the development of tough and o f t e n coarse strands of f i b r o v a s c u 1ar t i s s u e , which according to Hayward (46) may be d i s t r i b u t e d throughout the ro ot t i s s u e . E a r l y workers (16, 19, 56, 113) recognized t h a t roots w i t h a high f i b e r con ten t were not acceptable as a baked or canned pro du c t. Sweet po ta to breeders have attempted to avoid the re le as e of a new v a r i e t y high in f i b e r by s e l e c t i n g only those i n d i v i d u a l s t h a t ex h i b i t e d a low f i b e r c o n te n t. Several workers have noted an apparent in f lu e n c e of environment on the f i b e r content (16, 41, 50, 56, 113). In 1959, Newsom (77) described a method f o r determining the f i b e r content o f baked sweet po ta to r o o t s . Harmon (42) studied the f i b e r content of c e r t a i n sweet potat o v a r i e t i e s and s ee d lin g s . among see dlings and v a r i e t i e s fibers. ronmental tin in the q u a n t i t y , co lo r and t e x t u r e of He suggested t h a t f i b e r , factors, He found a wide v a r i a t i o n although st r o n g l y in flu enc ed by e n v i Is d e f i n i t e l y a h i g h l y h e r i t a b l e c h a r a c t e r . Constan (24) ev a lu a te d a number o f seedlings f o r f i b e r content from a sub j e c t i v e view. He did not discuss f i b e r content as such, but he con s id ere d i t only as i t in flu enc ed his baking index. His data showed some ap p re c ia b le v a r i a t i o n among and w i t h i n progenies Stokes (102) reported in f i b e r con ten t. in 1934 t h a t t h e r e was an a s s o c i a t i o n between 18 fib er in sugar cane and the per cent sucrose, di am et er , hei ght and weig ht. orde r but s i g n i f i c a n t . internode le n g t h , stalk The c o r r e l a t i o n was p o s i t i v e and of a low Wang (107) found t h a t sucrose and f i b e r content o f sugar cane v a r i e d s i g n i f i c a n t l y w i t h i n a v a r i e t y among p l o t s and years which i n di c at ed a very strong environmental (k j) influence. Hebert concluded b r i x and sucrose were c l o s e l y c o r r e l a t e d and independent of s t a l k diameter and e r e c tn e s s . He reported a close a s s o c i a t i o n be tween c h a r a c t e r i s t i c s o f parents and t h e i r progenies but expression of t h i s ch a ra ct er was s t r o n g l y gre ga tio n in a l l influenc ed by seasons. Tran s gr es si ve se crosses was evidenced by the number of bove and below e i t h e r p a r e n t . Singh (9*0 i n d i v i d u a l s a- reported a s i g n i f i c a n t po s i t i v e c o r r e l a t i o n between per cent f i b e r and per cent bagasse and also between per cent f i b e r and sucrose co n te n t. He st a t e d t h er e was a close r e l a t i o n s h i p between the f i b e r content of parents and progenies and t h a t wit h a knowledge o f the f i b e r content of the pa r e n ts , one could r e l i a b l y p r e d i c t the f i b e r content of progenies; however, some t r a n s gress ive segregation did occur. He said f i b e r was a q u a n t i t a t i v e cha r a c t e r w it h an absence of dominance among the genes; selection for in itia l low f i b e r or high sucrose should not be too r i g i d . Richmond ( 86) in his study of l i n t q u a l i t y in American upland cotton suggested two g e n e ti c systems were involved - presence or absence of Lewis (65) found a l l lity therefore, l i n t and m o d i fi e r s f o r q u a n t i t y and q u a l i t y . F3 progenies were ex tr em el y v a r i a b l e in his study of Gossypiurn hy b rid s. range of v a r i a t i o n a s i n g l e gene f o r in l i n t s t r e n g t h , of upland cotton v a r i e t i e s . in l i n t qua Green (37) described a wide length and fineness S e l f and Henderson (93) st re ngt h of the f i b e r behaved as a t y p i c a l in a c o l l e c t i o n re por te d t h a t q u a n tita tiv e character. They 19 st at ed the mean d i f f e r e n c e between the 2 parents probably due to A or 5 p a i r s o f genes. length in t h e i r study was Sloan (98) concluded t h a t f i b e r in American upland cotton was a h i g h l y h e r i t a b l e ch a ra c t e r con d i t i o n e d by a t l e a s t 3 p a i r s of genes. Stafford (100) stated f ib e r st re ngt h and pe r im et e r h e r i t a b i l i t y was approximately 50 per cent and was c o n t r o l l e d by r e l a t i v e l y few genes. Kramer, ert aj_ (62 , 63) developed an o b j e c t i v e method f o r deter min ing the f i b e r content of processed asparagus. This method was shown to c o r r e l a t e extr em el y w el l w it h s u b j e c t i v e e v a l u a t i o n of asparagus f i b rousness. S c hm itt , W il d e r and Kramer (91) in d ic a t e d t h a t the break p o i n t between acceptable and unacceptable asparagus from the standpoint o f fibrousness was a t the app ro xi m at el y o n e - h a l f per cent le ve l ov f i ber con tent. MATERIALS AND METHODS Source of M a t e r i a l Fourteen pa re n ta l t h i s study. lines o f known c o m p a t i b i l i t i e s were selec ted f o r The p ar en ta l li n e s were a l l Louisiana A g r i c u l t u r a l E x pe r i ment S t a t io n v a r i e t i e s or F] see dling s except Kandee, W h i t e s t a r , an Oklahoma A g r i c u l t u r a l Experiment S t a t i o n F] se ed lin g North C a r o li n a Experiment S t a t i o n v a r i e t y , l in e s were tr a n s p l a n t e d to the breeding nursery o f the Louisiana A g r i c u l t u r a l Experiment S t a t io n campus a t Baton Rouge, Louisiana in A p r i l of 1963• The p l a n t s were t r a i n e d onto a s i x f o o t net w ire t r e l l i s was c o n t r o l l e d by pruning the top system. as needed to keep the plants in a moderately vigorous growing co n d it io n . p o l l i n a t i o n of the se le c t e d pa r e n ta l ber and continued to October 2 5 t h . cut and growth I r r i g a t i o n water was app lied Most p l a n t s had begun f lo w e r i n g by mid-August. ter) and a Nugget (NC171). Well e s t a b l i s h e d p la nt s o f the pa re n ta l located on the L. S. U. (0K5I), The c o n t r o l l e d cross l in e s was begun in e a r l y Septem Giant soda str aws , (7 mm in diame in lengths of appro xim at el y two inches, were used t o p r o t e c t both male and female flow er s from contamination by in se ct s. Flowers se le c t e d f o r use as females were emasculated in the l a t e af te rn oon of the day p r i o r to opening and the exposed p i s t i l was covered w i t h a s e c ti o n o f soda straw closed a t one end. Flowers to be used as the males were se le c t e d a t the same time but were covered wi thou t emascula tion. Female flo w er s were cross p o l l i n a t e d the f o l l o w i n g morning be tween 5: 0 0 and 8 : 0 0 a . m . , tagged to i d e n t i f y parentage, and re-covered 20 • 21 w it h the soda straw s e c ti o n s . Seed were harvested as they became dr y, separated as to parentage, cleaned, placed in marked coin envelopes, and placed in storage. In January 1964, the seed were s c a r i f i e d 20 minutes in c o n c e n t r a t ed s u l f u r i c a c i d , washed in tap w a t e r , d r i e d , and tra ns po rt ed to the Sweet Potato Research Center a t Chase, Lou isiana. They were plant ed in the greenhouse benches a t Chase where the seedlings were grown u n t i l May 13, 1964. They were then t r a n s p l a n t e d to the f i e l d on rows fo ur f e e t a p a r t and the p l a n t s were spaced f i v e f e e t a p a r t on the rows. The p la nt s were allowed to grow u n t i l September 16, The roots were harvested September 16, 1964. 1964, counted, placed in paper bags t h a t were coded to i d e n t i f y the parentage and the roots each p l a n t were kept s e p a r a t e l y . of The roots were c a r r i e d by t r u c k to the sweet po t at o cu r in g and storage f a c i l i t i e s U n i v e r s i t y , S t a t e C o ll e g e , M i s s i s s i p p i , a t M i s s is s ip p i St at e cured f o r seven days at 85 degrees F a r e n h e i t and 85-95 per cent r e l a t i v e humidity and then stored f o r 30 days a t 60 degrees F a r e n h e i t and 75-85 per cent r e l a t i v e l y hu m idity. All sampling was c a r r i e d out in arandom manner w it h o u t ledge of the parentage of know any sample. Measurements o f the Raw Roots A l l enlar ged roots of a sample were washed, d r i e d , and the skin co l o r determined under l i g h t from a n o r t h e r l y d i r e c t i o n using the USDA Standard Skin Color c h a r t and d i r e c t i o n s f o r Yeatman ( 1 1 6 ) . o f each s e e dl in g were grouped in one of the The roots f i v e skin c o l o r groups, cream ( C r ) , Tan ( T ) , i t s use as prepared by Copper ( C u ) , Rose ( R ) , or Purple (P) but were not separated i n to the sub-groups w i t h i n a given c o l o r cl ass as i l l u s t r a t e d in Pl a t e 1. PLATE 1: The Sweet Potato Skin Color Scale, Prepared by the United St a t e s Department of A g r i c u l t u r e in Cooperation w i t h the Sweet Potato C o ll a b o r a t o r s Conference, Represents from L e f t to R i g h t : Pu rp le , Rose, Copper, Tan and Cream Colors 23 Root shape was determined f o r a gi ven see dli ng by o b t a i n in g the average length and width of a l l le n g t h r w id t h r a t i o the roots from t h a t p l a n t , and the (L:W r a t i o ) was used as the shape index. and w id t h measurements were made t o the nearest 1/4 measured p a r a l l e l inch. All length Length was to the d i r e c t i o n of elongated growth t a k i n g in to con s i d e r a t i o n any c ur va tu r e in c e n t r a l a x i s of the r o o t . The p o i n t of maximum diameter was used to determine width. Dry m at te r content o f each s ee d lin g was determined. A plug of ap p r o x i m a t e ly 20 grams of t i s s u e from the median region of the r o o t ' s length was ob t a in e d using a number 10 cork b o r e r . placed mined. in pre-weighed, coded, metal cans, and the f re sh weight d e t e r The cans were uncovered, placed 24 hours a t 105° Ce ntigrade, cool. The plugs were in an e l e c t r i c oven, d r i e d f o r covered, and placed in a d e s ic c a t o r to The c o n t a i n e r s were then re-weighed and the per cent dry matter calculated. Roots of each see dling were ev a lu a te d f o r smoothness or freedom from v e i n i n g and crac king . ed w i t h a value o f s c a le An a r b i t r a r y scale o f 1 to 5 was e s t a b l i s h 1 being very rough and 5 being very smooth. is i l l u s t r a t e d in P l a t e 2. The Roots of each seedling were also e v a lu a t e d f o r u n i f o r m i t y o f shape and smoothness using a s i m i l a r a r b i t r a r y scale where 1 represented very v a r i a b l e o r rough and 5 very u n i form root s. The thickness of the c o r t e x , which according to Hayward (46) t h a t t is s u e is l y i n g between the periderm and the o u t e r cambium and some times r e f e r r e d t o as the p e r i c y c l i c zone, was determined to the nearest 1/16 o f an inch. Carotene was determined by a m o d i f i c a t i o n o f the method o f PLATE 2 The Scale Used f o r Smoothness of Root Surface. Ratings were, by Columns, L e f t to Righ t: 1, 2, 3 i ^ and 5 R e s pe c tiv el y Thompson'and Kon as described by Goodwin ( 3 6 ) . A one gram sample of t is s u e was blended 5 minutes in acetone, placed on a sucrose column. The column was washed w i t h 100 ml. of a 2 per cent acetone in hexane s o l u t i o n . t r a n s f e r r e d to hexane and The e l u t e d pigment was c o l l e c t ed and l i g h t absorption determined by reading w it h the Spec tron ic 20 at 450 m i l l i m i c r o n s . The pigment c o n c e n t r a ti o n was then determined by l o c a t i n g the abs or pt io n po in t on a standard curve p l o t t e d from samples o f known c o n c e n t r a ti o n s . Measurements o f Baked Roots One root from each p l a n t o f each progeny was baked 90 minutes a t 375° F . , cooled f o r 45 minutes a t room temperature and e v a lu a te d . Whenever p o s si b le roots of a r e l a t i v e l y uniform s i z e (1 3 / 4 to 2 1/2 inches in diameter and 4 to 7 inches in length) were baked. Firmness was measured using the ASCO firmness meter w it h a non l i n e a r pr es tr es s weight of 500 grams and a n o n - l i n e a r t e s t weight of 400 grams in p o s i t i o n number two. and the d i a l scale o f A t e s t time of 10 seconds was used reading a t the end of the t e s t period was converted t o a 1 to 5 w it h 1 rep re s en tin g the f i r m e s t and 5 the s o f t e s t roots. F i b e r was determined a f t e r the method of Newsom (77) w it h m o d i f i cations. A 25 gram l o n g i t u d i n a l f o r 20 minutes s e c ti o n o f the baked root was b o i le d in 60 ml. of a 10 per cent NaOH s o l u t i o n and poured on a 3 1/4 inch d ia m et er , 30 mesh screen o f monel w i r e c l o t h w i t h open ings app roximately 590 microns wide and washed in tap water to remove all tra ces of f l e s h . The f i b e r s were placed on f i l t e r paper, d r i e d 24 hours a t 100° C . f weighed and the per cent f i b e r c a l c u l a t e d . the i n d iv id u a l f i b e r s was rated as i l l u s t r a t e d in P l a t e 3. Size of PLATE 3: The F ib er Diameter Scale as I l l u s t r a t e d is Represented by Values: Top Row: ( L e f t to Ri ght ) 1 = Very Coarse, 2 = Coarse; Bottom Row: 3 = Medium, k = F i n e , and 5 = Very Fine ( 1. 5 Times Actual S iz e) 27 Color i n t e n s i t y and u n i f o r m i t y , moistness, sweetness and f l a v o r were e v a l u a t e d by a panel o f three and r a t e d on a s ca le o f 1 t o 10 w ith 10 r e p r e s e n t i n g the i d e a l . A fin a l r a t i n g f o r each f a c t o r was o bt ai ne d by a ve r ag in g the scores o f the th r e e p a n e l i s t s . The baking index f o r a s e e d l i n g was o bt ai ne d by an average o f the scores f o r each f a c t o r con si d er ed . Progeny means were c a l c u l a t e d . RESULTS AND DISCUSSION The breeding parents and the expression o f t h e i r ch ar ac te rs are shown in Tables 1 and 2. were shape (L:W r a t i o ) , per cent dr y matter, ness, f l a v o r , in Table 1, The c ha ra ct er s ev a lu a te d in the raw roots smoothness, cortex thick nes s, skin color, sweetness, carotene co n te n t, and in the baked roots c o l o r , m oi st firmness, fib e r, and baking index. smoothness o f the roots va r ie d l i t t l e As shown among the parents due to s e l e c t i o n pressures f o r t h is c h a r a c t e r e x e r te d through the years. Root shape o f the paren ts var ie d c on si d er ab ly as shown by L:W ra tio s o f 1.6 t o 3-**. The i d e a l root shape as expressed by the L:W r a t i o has been considered by sweet potato breeders to be approximately 2. 0 which means t h a t the roots a r e twice the length o f the g r e a t e s t diameter. The sweet potato parents v a r i e d tissues o f the roots; f o r example, in thickness of the c o r t i c a l the c o r t i c a l tiss ues o f the f l e s h y roots of L3-93 were found to be 1/ 16 of an inch t h i c k , whereas, several o f the o t h e r breeding parents were 3/ 16 of an inch t h i c k . In g e n e r a l, roots w it h a t h i c k c o r t e x have been found to be u n s a t i s f a c t o r y from a h orticultural s t a n dp oi nt . The ca ro te ne c o n te n t of the sweet po t at o parents, m i l l ig r a m s per 100 grams o f f re sh root t i s s u e , ( W h it e s t a r ) to a high o f 19-** ( L8—3) • as expressed in var ie d from a low of 0 . 7 The dry matter content of L l - 8 0 , the hi gh es t parent, was appro xim at el y 50 per cent g r e a t e r than L 1—171> the lowest. The s k i n color o f the roots o f the d i f f e r e n t parents varied from a 28 TABLE 1: Parent Shape ( L:W Ra tio ) A De scr ip tio n o f the Characters of the Raw Roots of 14 Sweet Potato Breeding Parents Smoothness-^/ Cortex Thickness in 1/16 inches Carotene Content (mq/ 1 0 0 qms) Per Cent Dry Matt er Skin Col or L3-77 1.99 4.9 2.0 18. 1 28.34 Copper Kandee 1.89 4 .1 3.0 6.2 28.19 Tan Whi t e s t a r 2.44 3.2 2. 0 0. 7 28.30 Cream L3-80 2.00 4.4 3.0 9.6 29. 84 Rose L3-93 3.50 4.0 1.0 15.2 25.24 Copper to Rose L3-77t 3.25 4.8 2. 0 17.0 22.89 Rose to Copper LI 31 3.43 3.3 3.0 8.6 29.34 Tan L8-3 2.38 4.9 2.0 19.4 26.56 Rose to Copper LI -171 3.00 3.9 2.0 14.9f 20.73 Rose OKS 1 2.67 4.8 2. 0 11.6 26.21 Copper L9-39 1.60 4.5 3.0 12.1 23.86 Copper to Rose L I -80 3.20 3.9 3. 0 15.2 30.51 Copper NCI 71 3.00 4.8 3. 0 10.8 23. 09 Copper L21 2.33 4.3 2.0 2.9 32.22 Tan ]_/ Numerical scale from 1 to 5* 1 = Very rough, 5 = Very smooth. TABLE 2: Parent A D e sc ri pt io n of the Characters of the Baked Roots of 14 Sweet Potato Breeding Parents ............. ” " CUL'OR 1ntens i ty \J Uni formi ty_l_/ Moi s t nessj_/ F 1avorJ_/ Sweet ness^/ F i rmness2/ TIBER' " S i z e V Per Cent Baki ng 1n d e xj / L3-77 7.9 7. 5 7-0 7.3 7. 0 4.4 2. 5 0.631 7.3 Kandee 2.5 3. 0 4.5 5.0 5. 5 3. 0 3.2 0.301 4.5 Whi t e s t a r 1.0 8.5 2.5 4.0 3. 5 1.0 2.4 0.741 00• L3-80 4.0 5.5 6.4 6.5 6.7 3.0 4.9 0.663 6.2 L3-93 7.0 5.6 7.4 7.6 6.4 3.7 4.1 0.503 6.9 L3-77t 7-5 8.0 7.1 7.4 7.5 4.6 4.0 0.483 7-7 LI 31 5.0 4.1 5.5 2.1 3.4 1.6 2.2 0. 746 4.0 L8-3 8.1 8. 2 7. 5 8.0 7.5 4.6 2.8 0.775 7.8 LI-171 6.4 7.3 7.1 5.7 6.4 3.5 3.1 0.715 6.6 0K5I 5.5 7.1 8.4 6.5 7.0 4.5 3. 0 0. 489 7.0 L9-39 6.1 4.6 8.5 6. 5 6.5 4.5 2.7 0. 959 6.6 L I - 80 5.8 7.5 8.3 6.6 8.0 4.6 4.2 0. 628 7. 5 NC171 3-6 5.5 5.1 5.5 4.6 2.5 2.1 1.106 4.8 L21 1.0 7.6 4.5 4.5 6.4 1.5 3.9 0.741 4.9 \J 2J j}/ Numerical scale Numerical scale Numerical scale from 1 t o 10; from 1 to 5: from 1 to 5: I = Least d e s i r a b l e , 10 = Most d e s i r a b l e . 1 = Very f i r m , 5 * Very s o f t , 1 = Very coarse, 5 = Very f i n e . 31 cream to a rose c o l o r . D i f f i c u l t y was encountered in some cases, d i s t i n g u i s h i n g between the copper and rose c l as se s. Some pa re n ta l in l in e s were c l a s s i f i e d as copper to rose or rose to copper skin co lo r depending on which c o l o r tended to be predominant. Data o f the baked roots o f the p a r e n ta l l i n e s , as shown in Table 2, v a r i e d con si d er ab ly in some of the ch a ra ct er s c o n t r i b u t i n g to the baking index. in carotene and f i b e r content were larg e among the Differences breeding p ar en ts . NC171 contained more than 4 times as much f i b e r as Kandee. The baking index, which is the average expression o f a l l te r s o f the baked r oo ts , the charac v a r i e d much less than the o t h e r c h a ra c t e r s . This was accounted f o r by the f a c t t h a t a parent may be r e l a t i v e l y poor in a c e r t a i n c h a ra c t e r f o r baking because i t was se le ct ed f o r the s u p e r i or expression o f another c h a r a c t e r and t h a t tended t o narrow the v a r i a t i o n among the pa r e n ta l lines. A summary o f the production o f storage roots by each se e dl in g each progeny and the per cent t h a t r o t t e d Table 3. The p a r e n ta l in st orage is presented in in l in e s were crossed in 21 d i f f e r e n t combinations and the number of seedlings o b t a i n e d , the number and per cent t h a t de veloped storage r o o t s , and the per cent o f seedlings w it h roots t h a t rotted in storage are shown f o r each of 21 progenies. The per cent of seedlings t h a t produced storage roots v a r i e d from 21 .5 f o r the Kandee s e l f e d progeny to 87-5 f o r the L8-3 x L I —80 progeny. The Kandee s e l f e d and the 0K51 x L131 progenies were l e a s t produ ctive w i t h an average of 3 . k roots per se e dl in g w h i l e the L3-80 x L3-77 progeny produced an average o f 11.3 roots per s e e d li n g . various progenies in which a l l The per cent of seedlings o f the roots r o t t e d in the in storage v a r i e d 32 TABLE 3: The E f f e c t of Parentage on the A b i l i t y o f Seedlings in Each Progeny to Produce Roots th a t Store Wei 1 Number of Seed1 i nqs Cross No. Seed1 i ngs Produc i ng Storage Roots Per Cent Seed 1i ngs Producing Storage Roots Average Number Roots/ Seed1 ings Per Cent Seedli ng Roots Rot ted i n Storaqe L3- 8 0 x L3-77 18 10 55 .5 11.3 0 L3-77 (X) 38 20 52 .6 4.2 30.0 L3-77 x NCI71 79 21 26.6 3.5 14.3 L3-80 44 16 36.it 4.4 43.8 35 19 54 .3 4.2 21.0 135 29 21.5 3.4 17.2 L 3 - 7 7 t x L131 73 2b 32.9 4.6 25.0 L3-77 x L I - 80 80 38 47.5 4.8 15.8 L3-77 x K 53 b\ 7 7 -b 4.2 26.8 172 138 80 .2 4.5 23.9 L3-80 x K 60 27 66.7 10.0 25.0 K x L3-80 16 10 62.5 8.5 30.0 K x L3-77 18 12 66.7 10.0 25.0 L3-93 x L I3 I 93 58 62.b 4.7 18.9 120 90 75 .0 5. 0 15.6 L8-3 x L I -80 40 35 87 .5 5-5 2. 9 LI -171 X 21 10 47.6 4.4 20.0 L131 L3-77 46 33 71 .7 5.2 21.2 Mb 5b 22.9 3.4 27.7 L9-39 x NCI71 21 1 33.3 4.6 28.6 W . S . * x L21 45 27 60.0 4.8 18.5 (X) L 3- 77 t x NCI71 Kandee (K) (X) L3-77 x L3-80 L3-93 x L I - 80 X LI 31 0K51 x L I 31 * W,S. = W h i t e s t a r 33 from z e r o to 4 3 . 8 . The performance of the 14 parental is presented in T a b l e 4. l i n e s as male or female parents The parent L8- 3 ( J u l i a n ) had the best p e r f o r mance as a female from the st and po int o f the per cent of the see dlings in t h e progeny t h a t produced storage roots and roots t h a t stored w e l l , whereas 0K51, L 9 - 3 9 and Kandee were poorest as female pa re n ts . When used as the male pa re n t, L3-80 produced the g r e a t e s t per cent o f seedl i n g s w i t h en la rg ed storage root s and NC171 Only four o f the f ou rte en parents, were used as both male and fe m a le . in a l l (Nugget) had the l e a s t . L3- 77, L3-80, Kandee, L131 and Kandee, L3-77 and L3“ 80 were crossed possible combinations w i t h one a n o th e r. Kandee, L3-80, and L 131 produced a somewhat smaller average number of roots per p l a n t as a male parent than as a female p a r e n t , however, the reverse was tru e f o r 1-3-77. L3-80 and Kandee progenies produced a g r e a t e r per cent o f the p la nt s w i t h enlarged s t o r a g e roots when they were used as male pa re n ts . The opposi t e was t r u e f o r L131, b u t L3-77 performed e q u a l l y w el l as a male or f e m a l e parent. The p o s si b le presence o f cytoplasmic f a c t o r s was suggested by these data but t h e y were not s u f f i c i e n t to support the cy t o p la sm ic t h e o r y . I nh er i tance of Shape The frequency d i s t r i b u t i o n of the sweet potato see dli ng o f each progeny into d i f f e r e n t le n g t h - w i d th r a t i o classes and t h e per cent o f the see dling s in each class The progeny means vari ed from 1.54 to 3 . 0 3 . is given in Table 5 is shown in Table 6 . In most progenies more than 60 p e r cent of th e seedlings were in classes 3, 4 and 5» possessing a L:W r a t i o of 1.5 to 3. 0. However, the progeny o f L3-77 * L l - 8 0 had only TABLE 4: Parental Females: Line L3“ 77 L3-80 Kandee LI 31 L3-93 L3-77t L8-3 LI -171 0K51 L9-39 Wh ite s ta r Comparative Data of Seedlings when Parents Used as a Male or Female Number of Proqen ies 5 3 3 1 2 2 1 1 1 1 1 Number Seed1 i nqs Number Seedli ngs Producing Roots Per Cent Seedli ngs Produc i ng Roots Average Number Roots per Seedli nq Per Cent Seed 1i ngs w ith Roots th a t Rotted 422 122 169 46 213 108 4o 21 124 21 45 258 53 51 33 148 b3 35 10 54 7 27 61.1 43.4 30 .2 71.7 69.5 39 .8 87.5 47.6 22 .9 33-3 60.0 4.4 6.1 5.9 5.2 4.9 4.4 5.5 4.4 3.4 4.6 4.8 22 .9 16.7 21.5 21 .2 16.9 23.3 2.9 20.0 27.7 28 .6 18.5 120 232 248 311 240 135 45 75 164 97 146 163 47 27 62.5 70.6 39-1 46.9 67-9 34 .8 60 .0 6. 5 4.7 4.2 4.2 5.1 3.9 4.8 21.3 26.2 18.5 23.2 12.9 19.1 18.5 21 Males: L3-77 L3-80 Kandee LI 31 L I -80 NCI 71 L21 4 3 3 4 3 3 1 . 21 V>3 45* TABLE 5: Class No. 1 O L:W Ratio • 1 LTV « 2 LA • 1 O Frequency D i s t r i b u t i o n o f Number Sweet P o ta t o S e e d li n g s o f Each Progeny i n t o D i f f e r e n t Le n g th rW id th R a t i o Classes 3 4 5 6 7 8 9 10 0• tn 0 -3" 1 in in ■31 0 0 m 1 in 0* in 10 > 0 0 LTV CM CM LTl * O 1 1 1 Lf\ -3- 1 2 1 b 2 2 3 10 3 2 4 3 it 2 3 9 5 5 10 9 9 5 4 4 7 11 3 CM L3-80 x L3-77 2 4 1 7 14 L3-77 (X) 1 9 L3-80 (X) L3-77t x L131 Kandee (X) L3-77 x L I -80 1 0 oa • ro Parentage L3-77 x NC171 « 3’ 3.00 0. 42 1.87 0.21, 2. 76 0.37 2.15 0. 33 1.78 0.23 2. 67 0. 32 1.89 0.19 b 2.4it 0. 16 1 2.5*+ 0.31 2.16 0.32 1 1 1 2 6 16 10 5 1 1 L3-77 x L3-80 I 6 39 36 25 12 8 L3-80 x K 1 4 5 9 7 1 1 3 1 1 1 3 6 Standard Error 0.43 3 1 Progeny Mean 3.03 1 L3-77 x K K x L3-77 - Continued TABLE 5: C lass No. L:W R a t io Continued 1 2 3 4 5 6 7 8 9 10 o LTV O LA o o 1 1 LA O -3" i LA LA o -3" 1 LA CM o cn i LA CM CM Cvl • CA CA LA « ta> > o Progeny Mean S ta n d a rd E rror 1 2. 04 0.74 2.01 0.16 2. 29 0. 15 2.11 0.22 2.01 0.16 2.36 0.28 2.15 0. 22 1.54 0 .19 1.60 0. 62 1 LA * 1 O 1 » Parentage LTV CA O LA K x L3-80 1 5 1 1 1 L3-93 x L131 9 22 13 9 4 1 8 20 29 20 8 2 4 12 10 6 2 4 6 1 12 8 5 2 4 10 5 4 L3-93 x L I -80 1 L8-3 x L I -80 Ll-171 x L I 31 L I 31 X L3-77 0K51 x L I 31 1 7 17 8 W.S. x L21 2 12 7 6 L9-39 x NCI71 1 3 1 2 O • 1 1 1 1 1 1 TABLE 6: Class 1 o — I Parentage Percentage o f Sweet P o ta t o S e e d li n g s o f Each Progeny In D i f f e r e n t L e n g th rW i d th R a t i o Classes 2 3 LTV 4 O O LA I » » CM c \l i l i O Ln O IA _• J ^ ^ L3-77 (X) 2.5 6 — 22.5 L3-80 (X) « ro I 7 • O 1 LA OA CA o 9 o • LA 1 LA -d’ 10.0 20.0 10.0 5. 0 35 .0 20 .0 10.0 10.0 15.0 35. 0 25.0 7.5 5. 0 25.0 18.8 25. 0 12.5 20 .8 10 a. => i o LA 5.0 2.5 18.8 37.5 20.8 Kandee (X) 34.5 31 .0 31.0 L3-77 x L I -80 13.2 10.5 10.5 18.4 28 .9 7. 9 4.2 4.2 3.4 L3-77 x K 4.9 14.6 39.0 24.4 12.2 2.4 2. 4 L3-77 x L3-80 0.7 4.3 28.3 26.1 18.1 8.7 5.8 L3-80 x K 3.7 14.8 18.5 33.3 25 .9 58.3 8.3 25.0 8.3 50.0 10.0 10.0 10.0 10.0 • -di 40.0 12.5 K x L3-80 LA • OA 1 O L3-77t x L131 K x L3-77 8 20.0 L3-80 x L3-77 L3-77 x NCI71 U"\ 5 2.9 7-9 0. 7 4.3 2.9 3.7 10.0 Cont i nued VjJ TABLE 6 : Class 1 O * Parentage 1 LA * L3-93 x L131 L3-93 x L l-8 0 1.1 L8-3 x L I -80 2 3 4 LA — 1 O O 04 1 LA — — LA CM 8 O CM cn 1 LA CM 15.5 37.9 22.4 15.5 6.9 1.7 8.9 22.2 32.2 22.2 8.9 2.2 34.3 28.6 17.1 •5.7 40.0 60.0 3.0 36.4 24.2 15.2 6,1 12.1 18.9 9.4 7.5 11. Ll-171 x L131 L131 x L3-77 0K51 x L131 1.9 13.2 32.1 15.1 W.S. x L21 7.4 iA .if 25.9 22 .2 14.3 42.9 L9-39 x: NC171 Continued 14.3 5 0 28.6 6 in PA O • PA 7 0 8 n j-* LA OA • 1 O * ■J- 9 0 in1 1 in J- 1.1 2. 9 3.0 1.9 10 u. 3I 1 O • LA 1 .1 3 9 . 4 per cen t of the seedlings in these classes, x NC171 had 4 2 . 9 per cent and W h i t e s t a r The wide v a r i a t i o n ed in Pl at e 4. in shape occ ur rin g (W.S.) x L21 had 48.1 per cent. in a s i ng le progeny is i l l u s t r a t The progeny mean was i nt erm ed iat e between the 2 parents in only 2 progenies, x NC171 L I 31 (3*43) (3-00) = 2.67. x L3-77 (1 -9 9 ) = 2 . 3 6 and L3-77 (1 .9 9) In one progeny, L9-39 ( 1 . 6 0 ) x NC171 progeny mean was the same as the female parent L3-77 ( 1 . 9 9 ) A ll the progeny of L9-39 (3.00), the and in the progeny of x Kandee ( 1 . 8 9 ) the mean was the same as the male pare nt. progenies in which L3-80 was e i t h e r the male or female paren t had a progeny mean g r e a t e r than L3-80. which L l - 8 0 or L131 were On the ot her hand, a l l crosses in involved as e i t h e r male or female p a r e n t , the progeny mean was always less than t h a t p a r e n t. i e s , no d e f i n i t e p a t t e r n occurred. Some had a In the remaining progen L:W r a t i o g r e a t e r than the highest parent w h i l e others had a L:W r a t i o sm al le r than the s m a ll e s t p a r e n t, which i n d i c a t e s t r a n s g r e s s iv e s e g re ga tio n . genes, one f o r length and one f o r w id t h , functioning Two sets of independently, pro bably c o n t r o l s the shape of the r oo ts . The c o r r e l a t i o n c o e f f i c i e n t between the number of roots per seed l i n g and the shape index or L:W r a t i o though r was s i g n i f i c a n t the p r a c t i c a l tremely sm al l. lity , is presented in Table 35. A l value of t h i s s i g n i f i c a n c e is ex Using the formula r^ x 100 = v a r i a t i o n due to h e r i t a b i - less than one per cent o f the v a r i a t i o n was due to h e r i t a b i 1i t y . Thus, the s e l e c t i o n of high y i e l d i n g p l a n t s should not in flu en ce the shape and a t the same time s e l e c t i o n based on shape o f the roots would not i n t e r f e r e w it h the s e l e c t i o n of high y i e l d i n g clo nes . This indi cates no link age between y i e l d i n g a b i l i t y of a see dli ng and shape of the f le s h y r o o t s . PLATE k : V a r i a t i o n s in Shape Observed in the Fj Progeny of the Cross L3-77 x L3-80. Lower Row Repre sents D e si r a bl e Length:Width R a t i o k] t n h er ita n ce o f Smoothness The frequency d i s t r i b u t i o n o f the seedlings in each progeny into d i f f e r e n t classes based on the smoothness o f the su rf ace of the roots is shown in Table 7 and the percentage of seedlings given in Table 8. in Pl a t e 2. ing were the reasons f o r p l a c i n g the seedlings ated. (classes is The data were skewed somewhat toward the smooth side of. the sca le which is i l l u s t r a t e d ratings in each class Ve ini ng and crack in the lower smoothness 1 and 2 ) ; these defec ts however, were not d i f f e r e n t i This d i s t i n c t i o n would have been desirabJe because the vei ni ng and crac king o f the roots as observed in these progenies were probably not r e l a t e d . The r e l a t i v e l y severe c r ac ki ng i l l u s t r a t e d a p p a r e n t ly g e n e t i c a l l y c o n t r o l l e d . in P l a t e 5 is Audus (10) discussed f a c t o r s a f f e c t ing growth in p l a n t s and there a r e no data to prove sweet potatoes would respond d i f f e r e n t l y . sim ilar The d i s t o r t i o n s illu strate d in many respects to the responses o f o t h e r pl a n t s t o growth substances. Patt er son and Speights cidence o f cra c ki ng to f e r t i l i z e r s , crop r o t a t i o n . (80) attempted t o r e l a t e the in p a r t i c u l a r l y nitrogenous ones, and They obtained h i g h l y s i g n i f i c a n t increases roots where sweet potatoes were grown in the same s o i l ye ar s. in P l a t e 5 are in cracked in successive Observations made of the data in t h i s study i n d i c a t e cracking is a g e n e t i c a l l y c o n t r o l l e d c h a r a c t e r , although some environmental con d i t i o n s may promote i t s ex pr es si on. In a l l o f the obse rv ation s o f t h i s study v e i n i n g was a pp ar en tly accompanied by an excessive accumulation o f f i b r o - v a s c u l a r t i s s u e in the veins which is a p p a r e n t ly g e n e t i c a l l y c o n t r o l l e d and such roots were observed to be q u i t e f i b r o u s . The d a t a were not recorded in such a way t h a t c o r r e l a t i o n s between f i b e r and v e i n i n g could be determined. TABLE 7: Class 2 Rough 3 Slightly Rough 4 Smooth 5 Very Smooth Progeny Mean Standard Er ro r 4 1 5 4.1 0.31 2 4 10 3 3.6 0. 23 L3-77 x NC171 3 5 11 2 3.4 0.19 L3-80 (X) 2 5 5 4 3.7 0.25 L3- 77t x NC171 2 7 7 3 3.6 0.21 Kandee (X) 3 9 9 8 KjJ 00 Parentage 1 Very Rough Frequency D i s t r i b u t i o n of Number of Sweet Potato Seedlings o f Each Progeny i n t o D i f f e r e n t Classes Based on Smoothness o f the Root Surface 0. 1 8 L3-77t x L I 31 5 8 8 3 3.4 0.19 L3-77 x L I -80 1 9 23 5 3. 8 0.11 17 13 4 3.3 0. 15 57 16 3.5 0.08 L3-80 x L3-77 L3-77 (X) 1 L3-77 x K 2 5 L3-77 x L3-80 2 18 L3-80 x K 1 3, 8 12 3 3.5 0.18 2 3 6 1 3.5 0.26 K x L3-77 m Cont i nued TABLE 7: Class 2 Continued 4 Parentaqe 1 Very Rouqh Rouqh K x 13-80 I I 3 4 L3-93 x L I 31 3 8 27 L3-93 x L I -80 3 6 L8-3 x L I - 80 3 S Ii ghtly Rouqh 5 Very Smooth Progeny Mean Standard Er ro r 1 3.3 0.8 2 12 8 3. 3 0.14 23 36 22 3.8 0.1 1 4 10 17 4 3 -6 0.14 Smooth LI - 1 71 X LI 31 I 1 5 1 2 3. 2 0.39 LI 31 x L3-77 1 6 10 12 4 3.4 0.18 0K5I x L I 31 4 8 20 12 8 3. 2 0.16 W.S. x L21 I 8 8 8 2 3.1 0. 20 2 3 2 3.0 0.31 L9-39 x NCI71 44 TABLE 8: Class No. Percentage of Sweet Potato Seedlings of Each Progeny in the D i f f e r e n t Classes Based on Smoothness o f the Root Surface 3 Slightly Rouah Smooth 40.0 10.0 50. 0 10.0 20. 0 50. 0 15.0 L3-77 x NCI71 14.3 23-8 52.4 9.5 L3-80 (X) 12.5 31.3 31.3 25.0 L 3- 77 t x NC171 10.5 36.8 36.8 15.8 Kandee (X) 10.3 31 .0 31. 0 27.6 L 3- 77 t x L131 20.1 33.3 33.3 12.5 L3-77 x L I - 80 2.6 23.7 60.5 13.2 Parentaqe 1 Very Rouah 2 Rouah L3-80 x L3-77 L3-77 (X) 5.0 4 5 Very Smooth L3-77 x K 4.9 12.2 41.5 31. 7 9.8 L3-77 x L3-80 1.5 13.0 32.1 41.6 11.7 L3-80 x K 3.7 11.1 29.6 44.4 11.1 16.7 25.0 50.0 8. 3 10.0 10.0 30 .0 40.0 10.0 L3-93 x L I 31 5.2 13-8 46.6 20 .7 13.8 L3-93 x L I - 8 0 3-3 6.7 25 .6 40.0 24.4 11.4 28.6 48.6 11.4 K x L3-77 K x L3-80 L8-3 x L I - 80 L 1-171 X L131 10.0 10.0 50 .0 10.0 20 .0 L I 31 x L3-77 3.0 18.2 30.3 36.4 12.1 0K51 x L131 7.7 15.4 38 .5 23.1 15.4 W.S. x L21 3.7 29.6 29.6 29.6 7.4 28.6 42.8 28.6 L9-39 x NC171 PLATE 5: Two Examples o f Severe Cracking o f the Roots Occurring App ar ent ly E a r l y in the Growing Season he The f a c t t h a t the data were skewed toward the smooth side could e a s i l y be accounted f o r by the f a c t t h a t a l l s e l e c t e d f o r smoothness. the p ar en ta l l in e s used have been Consquently, no paren t used in t h i s study had rough r o o t s . The c o r r e l a t i o n c o e f f i c i e n t between the number of roots and smooth ness (T able 35) was s i g n i f i c a n t but o f very low magnitude. As shown in Table 35, th ere was no c o r r e l a t i o n between shape and smoothness. I n h e r i t a n c e of Cort ex Thickness of Sweet Po tato Roots The frequency d i s t r i b u t i o n of the see dlings of each progeny in to d i f f e r e n t classes based on the thickness o f the co r t e x Table 9 and the percentage o f seedlings 10. in each class is presented in is shown in Table The class mean of the progenies v a r i e d from approximately 1.9 f o r the progeny of Kandee x L3-77 to appro xim at el y 3- ^ f o r the progeny of L9-39 x NCI71• near, In most progenies the mean was located between, or very the mean o f the two p ar en ts . In two progenies ( W h it es t ar x L21 and L9-39 x NC171) the c l a s s means were a p p r e c ia b ly l a r g e r than the hig hes t pare nt . In each progeny t her e were roots w i t h a c o r t e x t h in n e r than the t h i n n e s t parent and in most pr oge nie s, c o r t e x t h i c k e r than the t h i c k e s t p a r e n t. Thi s th ere were roots w it h a ind ic at ed most of the parents possessed genes t h a t were heterozygous f o r c o r t e x thickness and t h a t segregation was t r a n s g r e s s i v e . Three of the pa re n ts , Kandee, crossed in a l l L3-77 and L3-80, were s e l f e d and po s si b le combinations w i t h each o t h e r . When L3-77, c o r t e x thickness = 2 ( 1 / 8 i n c h ) , was used as the male p a r e n t, the pro geny mean was much nearer the mean j> f L3-77 than t h a t o f the female pa rent. This was suggestive o f a strong p a t e r n a l in flu en ce but such an TABLE 9: Frequency D i s t r i b u t i o n of Sweet Potato Seedlings of Each Progeny in to D i f f e r e n t Classes Based on Thickness of the C o rte x* of the Roots h ]/k" 1 1/16" 2 1/8" 3 3/16" L3-80 x L3-77 1 7 2 L3-77 (X) 2 9 6 3 L3-77 x NC171 1 13 18 5 11 3 Class Parentaqe L3-80 (X) 5 5/ 16" Progeny Class Mean Standard Er ro r 2.1 0.18 2.5 0. 20 2.8 0.1A 1 2. 5 0.16 2.6 0.13 2. 6 0.19 2.A 0.12 2 Kandee (X) 1 11 15 2 L3- 77t x LI3I 3 11 8 1 L3-77 x L I -80 2 21 12 3 15 17 8 1 2.9 0.13 5 2.6 0. 07 2.3 0. 16 L3-77 x K 1 L3-77 x L3-80 7 55 58 12 L3-80 x K h 13 8 2 K x L3-77 3 7 2 1.9 0.19 K x L3-80 1 5 k 2. 3 0.21 L3-93 x L131 1 28 22 2.6 0.09 6 Cont i nued TABLE 9 : Class Parentaqe 1 1/16" 2 1/8” C o ntinued 3 3/16" 4 1/4" 5 5/ 16" Progeny Class Mean Standard Er ror L3-93 x L I -80 2 **3 39 6 2.5 0. 07 L8-3 x L l -80 4 23 7 1 2.1 0.11 Ll-171 x L131 1 5 3 1 2. 4 0. 26 L131 x L3-77 2 14 13 4 2. 6 0.14 0K51 x L131 25 21 5 2 2.7 0.11 W.S. x L21 11 12 3 1 2.8 0.15 4 3 3. 4 0.20 L9-39 x NCI71 * Cortex = Tissues between periderm and p e r i c y c l i c zone. TABLE 10: Percentage of Sweet Potato Seedlings of Each Progeny in D i f f e r e n t Classes Based on Thickness of Cortex of the Roots Parentage 1 1/16" 2 1/8" 3 3/16" L3-80 x L3-77 10.0 70.0 20.0 L3-77 (X) 10.0 45.0 30 .0 15.0 2.6 33.3 46.2 12.8 73.3 20. 0 6.7 3.** 37 .9 51.7 6.9 L3-77t x L131 12.5 45.8 33-3 4.2 L3-77 x L I -80 5.3 55.3 31.6 7.9 36 .6 41.5 19.5 2. 4 5.1 40.1 42 .3 8.8 3.6 L3-80 x K 14.8 48.1 29 .6 4.9 K x L3-77 25-0 58.3 16.7 K x L3-80 10.0 50.0 40.0 1.8 49.1 38.6 Class L3-77 x NC171 L3-80 (X) Kandee (X) L3-77 x K L3-77 x L3-80 L3-93 x L131 ............... 7 ............... 1/4" 10.5 Cont i nued 5 5/16" 5.1 4.2 TABLE 10: Class Continued 1 1/16" 2 1/8" 3 3/16" b 1/4" L3-93 x L l -8 0 2.2 47.8 43.3 6.7 L8-3 x L l-8 0 11.4 65.7 20.0 2.9 Ll-171 x L131 10.0 50.0 30.0 10.0 L131 x L3-77 6.1 42.4 39-4 12.1 0K51 x L131 47.2 39 .6 9-4 3.8 W.S. x L21 40 .7 44.4 11.1 3-7 57.1 42.9 Parentage L9-39 x NC171 5 5/16' i nf l u e n c e was not as the male. i n d ic a t e d f o r the o th er parents when they were used L3-77 di d not e x e r t t h i s when i t was used as the female p a r e n t. i n flu en c e on the c o r t e x th ickness In g e n e r a l, the data were skewed somewhat toward the t h i n n e r or more d e s i r a b l e c o r t e x . by s e l e c t i o n pressures e x e r t e d This is e x p la i n e d in the development of the pa re n ts . i n d ic a t e s t h a t s e l e c t i o n f o r a t h i n c o r t e x is p r a c t i c a l . should encounter l i t t l e d iffic u lty The breed er in s e l e c t i n g f o r a t h i n c o r t e x . The thickness o f the c o r t e x l a y e r o f sweet p o t a t o roots portant fo r at l e a s t two reasons. This is im In handling the harvested roots a c e r t a i n amount o f damage from brusing occurs. Frequently, t h i s damage is e x h i b i t e d by sloughing o f f o f the c o r t e x and the deeper the c o r t e x the g r e a t e r layer is the area of exposed t i s s u e . is o f g r e a t e s t importance t o the processing i n d u s t r y . cessor, e s p e c i a l l y canners, quently, the c o l o r w i l l shown in P l a t e 6. color, The depth o f the c o r t e x The pr o p r e f e r s a product of uniform c o l o r . vary q u i t e markedly in the c o r t i c a l When the c o r t e x is deep (or t h i c k ) the processor must remove a l l a u n i f o r m l y colored product th er eby o f the c o r t i c a l Fre zone as and o f a d i f f e r e n t t is s u e s t o o b t a i n i nc r ea si ng the waste and a f f e c t i n g the economics o f the o p e r a t i o n . The data presented i n d i c a t e t h a t c o r t e x thic kne ss character. of genes is an i n h e r i t e d I t behaved in a t y p i c a l l y t r a n s g r e s s i v e manner. The number involved is probably few w i t h a simple a d d i t i v e e f f e c t . The c o r r e l a t i o n c o e f f i c i e n t between the shape tex thick nes s is presented in Ta bl e 35. was s i g n i f i c a n t but o f a low magnitude. (L:W r a t i o ) and c o r The ne g at iv e v a l u e , r = .138, In ap pr ox im at el y 2 per cen t of the p o p u l a t i o n , c o r t e x thic kne ss and r oo t shape were c o r r e l a t e d due to h e r i t a b l e causes. Smoothness and c o r t e x th ickness were not c o r r e l a t e d . 52 PLATE 6: V a r i a t i o n in the Thickness and Color o f the Cortex in Roots o f the Progeny of the Cross L3-93 x L l - 8 0 TABLE 11: Frequency D i s t r i b u t i o n of Number of Sweet Potato Seedlings of Each Progeny into D i f f e r e n t Classes Based on Dry M at te r Content Per Cent Dry Matt er Progeny Mean Standard Error 24.92 2.11 9 28.52 2. 02 2 1 24.25 1.49 3 3 4 29.91 2. 93 13 24 31 16 31. 28 0. 83 5 5 2 3 2 28.84 1.27 12 28. 48 0.84 25. 84 0.86 Be 1ow 20 20-23 23-26 L3-80 x L3-77 2 3 2 L3-77 (X) 5 15 21 L3-77 x NCI71 5 4 Parentaqe 29-32 32-35 1 2 32 29 16 5 2 2 2 4 2 10 2 L3-80 (X) Kandee (X) 1 L3-77t x L131 26-29 Over 35 L3-77 x L l - 8 0 2 10 29 38 24 20 L3-77 x K 4 6 13 9 4 5 L3-77 x L3-80 4 14 33 24 28 17 16 29.07 0.58 L3-80 x K 1 3 9 7 1 2 4 27-36 1.16 K x L3-77 1 1 4 3 1 2 26.88 1-7*1 K x L3-80 2 1 2 4 1 24.45 2. 10 • Cont i nued TABLE 11: Cont i nued ! Per Cent Dry M at t e r Be 1ow 20 L3-93 x L131 Pa rentaqe 26-29 29-32 32-35 13 9 5 5 14 22 21 9 10 8 8 7 1 5 2 2 20-23 23-26 9 10 L3-93 x L l - 80 5 L8-3 x L l-8 0 7 Ll-171 x L131 Progeny Mean Standard Err or 7 26.42 0.88 9 27.69 0.65 4 25.11 1.13 25.41 1.28 Over 35 1 L131 x L3-77 3 6 6 8 4 4 3 27.09 1.26 0K51 x L131 3 6 8 12 9 8 7 27.72 1.88 W.S. x L21 1 2 2 4 9 5 4 29.85 1.24 L9-39 x NC171 1 3 1 2 23.44 2.06 L3 -7 7t x L131 5 3 3 6 26.74 1.47 2 3 2 1 \n Sr TABLE 12: Parentage L3-80 x L3-77 L3-77 (X) L3-77 x NC171 Percentage of Sweet Potato Seedlings of Each Progeny in D i f f e r e n t Classes Based on Dry Matt er Content 2 20-23 3 23-26 20.0 30 .0 20.0 3-9 11.8 16.5 23 .8 19.0 Class 1 Per Cent Dry M at te r 0-20 5 29-32 6 32-35 10.0 20.0 25.2 22.8 12.6 7-1 23 .8 9.5 9.5 9.5 4.8 12.5 25.0 18.8 18.8 25-0 2.1 10.3 13.4 24.7 32.0 16.5 10.5 26.3 26.3 10.5 15.8 10.5 8.8 L3-80 (X) Kandee (X) 1.0 7 35-Up 1.5 7.4 21.3 27 .9 17.6 14.7 L3-77 x K 9.8 14.6 31.7 21 .9 9.8 12.2 L3-77 x L3-80 2.9 10.1 23.9 17.4 20.3 12.3 11.6 L3-80 x K 3.7 11.1 33-3 25 .9 3.7 7. 4 14.8 K x L3-77 33.3 25.0 8.3 16.7 * Va J L3-77 x L l - 8 0 CO L3-77t x L131 4 26-29 8.3 K x L3-80 20.0 10.0 20.0 40.0 10.0 L3-93 x L131 15.5 17.2 22. A 15-5 8.6 Cont i nued 8.6 12.1 I Parentage L3-93 x L l-8 0 L8-3 x L l-8 0 Cl ass Per Cent Dry Matter TABLE 12: C o n tin u e d 2 20-23 3 23-26 k 26-29 5 29-32 6 32-35 7 35-Up 5.6 15-6 24. 4 23.3 10.0 11.1 10.0 20.0 22 .9 22 .9 20.0 2.9 50.0 20.0 20.0 1 0-20 LI -171 X LI 31 11.4 10.0 L I 31 X L3-77 9-1 18.2 18.2 24.2 12.1 12.1 9.1 0K51 x LI 3 1 5.6 11.1 14.8 22.2 16.7 14.8 33.0 W.S. x L21 3.7 7- 4 7.4 14.8 33.3 18.5 14.8 L9-39 x NCI71 14.3 42.9 14.3 28.6 L3- 77t x L I 31 20. 8 12.5 12.5 25.0 8.3 12.5 8.3 V J1 ON 57 Inher i tance o f Dry M a t t e r The data presented in Table 11 gives the frequency d i s t r i b u t i o n o f the number o f see dling s of each progeny i n to d i f f e r e n t classes based on the dry m at te r c o n te n t. 12. The data in percentages ar e given in Table In each progeny t her e were see dling s w i t h a dry m at ter co n te n t a- bove the hi ghe st pa re nt and below the lowest p a r e n t. These dat e indi ca t e t h a t t ra n s g r e s s i v e segre gat ion did occur as po in te d out by Hernan dez (49) and Con st ant in (24). The data d i f f e r e d somewhat from those of Hernandez in t h a t he found the progeny mean in most cases was a p p r o x i mately equal to the mean o f the two p ar en ts . agree w i t h those of Constantin the mean o f the p a r e n ts . in t h a t the progeny means were lower than This was p a r t i c u l a r l y t r u e when the parents were both r e l a t i v e l y high in dry m a t t e r . the o t h e r These r e s u l t s more ne a rl y When one paren t was high and low, the progeny mean more n e a r l y approached the mean o f the parents. The c o r r e l a t i o n c o e f f i c i e n t s e x h i b i t e d in Table 35 showed no s i g n i f i c a n t c o r r e l a t i o n between number of roots of each see dling and dry m a t te r c o n t e n t , smoothness and dry m a t t e r , and c o r t e x thickness and dry m atter. Dry m a t te r con ten t was a q u a n t i t a t i v e c h a r a c t e r c o n t r o l l e d by se ve r a l genes s eg re ga tin g in a t r a n s g r e s s i v e manner. lacked dominance and were a d d i t i v e The genes a p p a r e n t ly in e f f e c t . Inheri tance o f Carotene Frequency d i s t r i b u t i o n o f the number o f see dlings of each progeny i n t o each carotene (total pigments) cl ass percentage o f the see dl in gs two o f the p ar en ta l in each class is shown in Table 13 and the is shown in Table 14. Only l i n e s were very low in carotene content and they TABLE 13: Parentaqe Class 3 mg/100 gm fresh wt. 0-1 Frequency D i s t r i b u t i o n of Number of Sweet Potato Seedlings o f Each Progeny into Classes Based on Carotene Content of the Roots 2 3 k 5 6 7 8 9 1-3 3-6 6 -9 9-12 12-15 15-18 18-21 21 + Progeny Mean Standard Error 3 k 13.40 .574 21 2k 7 10 lk 15 26 43 2k 12.54 L3-77 x NC171 2 3 7 3 7 3 9 3 3 11.16 • 533 L3-80 (X) 7 1 2 2 2 1 1 6.21 .625 4.98 .021 L3-77 (X) v jD 1 00 2 L3-80 x L3-77 37 18 16 5 6 5 6 k L3-77t x L131 2 3 2 2 k 2 4 k 1 12.06 .568 L3-77 x L l - 8 0 7 5 7 9 \k 11 16 29 38 15.71 .404 L3-77 x K 5 5 4 6 9 k 3 9.6 4 .396 L3-77 x L3-80 5 18 16 15 15 \k L3-80 x K 1 2 6 3 1 K x L3-77 2 k 1 K x L3-80 2 1 1 Kandee (X) 1 1 4 1 23 22 9 10.89 .024 5 6 3 12.41 .562 2 2 8.65 .896 2 2 10.51 1.027 Cont i nued 1 TABLE 13: Parentaqe Class mg/100 gm f re sh wt. 1 0-1 L3-93 x L131 2 3 4 5 C o ntin u e d 6 7 8 12-15 15-18 18-21 9 21 + Progeny Mean Standard Er ror 1-3 3-6 6-9 9-12 3 5 9 9 7 11 10 3 12.76 .030 L3-93 x L l - 8 0 1 9 7 11 10 8 13 17 lif 15.20 .029 L8-3 x L l -8 0 1 1 2 2 3 2 10 5 9 17.01 . if l9 1 2 1 2 2 1 1 l i t . 92 .730 1 if 1 2 3 6 9 12.22 .565 1 2 3 if 2 12. lit .568 2 lif 6 1 1.60 1.090 3. 18 1.060 Ll-171 x L I 31 L131 x L3-77 2 L3-77 x L131 5 3 0K51 x L131 2 3 6 9 8 W.S. x L21 9 7 5 if 1 L21 x W.S- 18 3 2 1 1 L9-39 x NC171 1 2 1 2 3 1 2.97 . 03if 2 2 10.80 .899 TABLE 14: Percentage of Sweet Potato Seedlings of Each Progeny in D i f f e r e n t Classes Based on Carotene Content of the Roots 1 2 3 4 5 6 7 8 9 0-1 1-3 3-6 6-9 9-12 12-15 15-18 18-21 21-Up 20.0 10.0 30.0 40.0 1 1 .4 13.0 3.8 5.4 7.6 8. 2 14.1 23 .4 13.0 5.0 7.5 17.5 7.5 17.5 7.5 22.5 7.5 7. 5 L3-80 (X) 43.8 6. 3 12.5 12.5 12.5 6. 3 6.3 Kandee (X) 37 .8 18.4 16.3 5.1 6.1 5.1 6.1 4.1 L3-77t x L I 31 8.3 12.5 8. 3 8.3 16.7 8.3 16.7 16.7 4.2 L3-77 x L l-8 0 5.1 3.7 5.1 6.6 10.3 8.1 11.9 21.6 27.9 12.2 12.2 9.8 14.6 21 .9 9.8 7. 3 ! 9.8 2.4 L3-77 x L3-80 3.6 13.0 11.6 10.9 10.9 10.1 16.7 15.9 6. 5 L3-80 x K, 3.7 7.4 22.2 11.1 3. 7 18.5 22.2 11.1 K x L3-77 16.7 33.3 8. 3 16.7 16.7 K x L3-80 20.0 10.0 10.0 10.0 20.0 20.0 10.0 12.1 18.9 17-2 5.2 Parentaqe L3-80 X L3-77 L3-77 (X) L3-77 x NCI71 L3-77 x K L3-93 x L ^ l Cl ass mg/100 gm fresh w t . 5.2 8.6 15.5 8.3 15.5 Cont i nued TABLE 14; Class 1 mg/100 gm Pa rentage______ f re sh wt.______O^J Cont i nued 4 5 6 7 8 9 1- 3 ______ 3-6 6 -9 9-12 12-15 15-18 18-21 21-Up 2 3 13-93 x L l - 8 0 1.1 10.0 7.8 12.2 11.1 8.9 14.4 18.9 15.6 L8-3 x L l - 8 0 2.9 2.9 5. 7 5.7 8.6 5. 7 28.6 14.3 25 .7 10.0 20.0 10.0 20.0 20.0 10.0 10.0 3. 0 12.1 3. 0 6.1 9.1 18.2 27.3 6.7 13.3 20.0 26.7 13.3 17.3 15.4 3.8 26.9 11.5 Li-171 x L I 31 L I 31 X L3-77 6.1 20.0 L3-77 x LI 31 0K51 x L131 15.2 3.8 5. 8 11.5 f W.S. x L21 33.3 25 .9 18.5 14.8 3.7 L21 x W.S. 62.1 10.3 6.9 3.4 3.4 L9-39 x NCI71 14.3 28.6 3. 7 ; 10.3 3-4 28. 6 28.6 3.8 PLATE 7: V a r i a t i o n in the I n t e r n a l Color of the Roots in the Progeny of the Cross L3-93 x L l - 8 0 63 were used only in combination w it h each o t h e r . st udi ed were derived by s e l f i n g each p a r e n t. Three of the progenies In each case the mean carotene content of the progeny was a p p re ci a bl e mean. lower than the parental The mean carotene content of the cross W h i t e s t a r x L21 was higher than the mean of the parents but s t i l l crosses, the progeny mean f e l l very low. In many o f the other between the two parents - u s u a l l y c l o s e l y approaching the mean of the two par en ts. of Hernandez (49) and Constantin This study, u n l ik e the work (24) did not include crosses between parents in which one was high and the o t h e r low in carotene, but s i m i l a r i t i e s were e v i d e n t . Carotene content was a q u a n t i t a t i v e c h a r a c t e r , t h a t segregated in a tra n s g r e s s iv e manner. When the data were studied t o g e t h e r they supported the conclusion of Hernandez (49) genes, probably 6, c o n t r o l l e d carotene c o n te n t. nance was suggested. The genes were a d d i t i v e t h a t several The absence o f domi in e f f e c t and the po s s ib i l i t y o f some e p i s t a t i c gene e f f e c t s were i n d ic a t e d . The c o r r e l a t i o n c o e f f i c i e n t s presented in Table 35 show t h a t caro tene was not c o r r e l a t e d w i t h the number o f roots per p l a n t , of the r o o t s , or thickness o f the c o r t e x . correlation matter. smoothness A h i g h l y s i g n i f i c a n t negative ( r = - . 569) was obtained between carotene content and dry I f s e l e c t i o n s were based on high carotene content al one , approximately one t h i r d of the seedlings would be low in dry m a t t e r . h i g h l y s i g n i f i c a n t p o s i t i v e c o r r e l a t i o n was obtained between carotene and moistness (r = + .6 0 1 ), between carotene and firmness and between carotene and f l a v o r (r - +.217). (r = +.5 1 4 ), In view of the negative c o r r e l a t i o n between carotene and dry m a t t e r , a p o s i t i v e r e l a t i o n s h i p would be expected between carotene and moistness, and t h i s r e l a t i o n ship is shown. The carotene and f l a v o r c o r r e l a t i o n suggests t h a t A 64 f l a v o r r a t in g s were influenced by c o l o r . The c o r r e l a t i o n between carotene and firmness ( r = + .5 14 ) a c t u a l l y showed t h a t as carotene values increased, firmness decreased because firmness r a t in g s were scaled from 1 through 5 w it h 5 being le a s t f i r m . Several workers (12, 40, 92) have attempted t o r e l a t e firmness to pec- t i c substances and have suggested t h a t s p e c i f i c enzyme systems are i n volved., I f a s p e c i f i c enzyme system is res po ns ib le , ap p ar en tly it is l in k e d w i t h carotene synthesis and is g e n e t i c a l l y c o n t r o l l e d . In her i tance of Skin Color The frequency d i s t r i b u t i o n o f the sweet potat o seedlings o f each progeny i n t o d i f f e r e n t skin co lo r classes the percentage o f the seedlings None o f the pare nt al progeny. in each class is shown in Table 16. P l a t e 8 shows the v a r i a t i o n The q u a n t i t a t i v e nature of is shown by the data. in Table 15 and li n e s had purpl e skin c o l o r and only one was c l a s s ed as cream (Table 1) . typical is presented In g e n e r a l, in skin co lo r o f a i n h e r i ta n c e f o r skin c o l o r the darker the skin c o l o r of the pa rents the g r e a t e r was the percentage of seedlings with darker skin color. Transgressive segregation occurred, since in a l l crosses t her e were seedlings w it h l i g h t e r and some w ith da r ke r skin c o l o r than e i t h e r parent. When the female parent had a darker skin than the male, the g r e a t e r p a r t o f the progeny had a dark skin c o l o r . I f the female pa r e n t had a l i g h t e r skin c o l o r than the male, the g r e a t e r p a r t of the progeny had a l i g h t skin c o l o r . This suggests a strong influence of the female parent on the skin c o l o r . Hernandez (49) and Constantin (24) in d ic a t e d skin c o l o r was con t r o l l e d by several genes t h a t were complementary. suggested a basic gene f o r c o l o r Hernandez f u r t h e r (D) and the presence o f complementary TABLE 15: Frequency D i s t r i b u t i o n of Number of Sweet Potato Seedlings of Each Progeny into D i f f e r e n t Skin Color Classes Parentage Cream Tan Copper Rose Purple L3-77 (X) 9 61 63 25 26 Kandee (X) 16 19 38 13 12 L3-80 (X) 3 2 5 4 2 L3-77 x Kandee 6 14 6 8 7 L3-77 x L3-80 14 41 53 15 15 Kandee x L3-77 3 1 4 4 Kandee x L3-80 2 2 L3-80 x L3-77 L3-80 x Kandee 4 L3-77 x L131 3 3 1 4 2 3 4 11 4 4 15 14 6 4 L131 x L3-77 4 9 13 7 L3-77 x NC171 1 8 14 12 5 L3-77 x L l-8 0 4 44 49 19 20 L3-93 x L131 12 20 18 6 2 Conti nued TABLE 15: Parentage Cream C o n tin u e d Tan Copper Rose Purple L3-93 x L I -80 9 22 38 15 6 L8-3 x L I -80 3 10 8 8 6 0K51 x L I 31 5 14 26 4 4 LI -171 X LI 31 2 2 3 2 1 W.S. x L21 22 2 L2I x W.S. 22 4 1 1 i 1 1 3 2 L9-39 x NCI71 3 TABLE 16: P ercentage o f Sweet P o ta to S e e d lin g s o f Each Progeny In D i f f e r e n t S k in C o lo r Classes Parentage Cream L3-77 (X) 4.9 Kandee (X) Tan Copper Rose Purpli 33.2 34.2 13.6 14.1 16.3 19.4 38 . 8 13.3 12.2 L3-80 (X) 18.8 12.5 31.2 25.0 12.5 L3-77 x K 14.6 34.1 14.6 19.5 17.1 L3-77 x L3-80 10.1 29-7 38.4 10.9 10.9 K x L3-77 25.0 8.3 33.3 33.3 K x L3-80 20.0 20.0 30.0 30.0 10.0 40 .0 20.0 30.0 14.8 40.7 14.8 14.8 38.5 35.9 15.4 10.3 12.1 27.3 39. 4 21.2 L3-77 x NC17I 2.5 20.0 35.0 30 .0 12.5 L3-77 x L I -8 0 2. 9 32. 4 36 .0 13.9 14.7 L3-80 x L3-77 L3-80 x K 14.8 L3-77 x L131 L I 31 x L3-77 Cont i nued TABLE 16: C o ntinue d Cream Tan Copper Rose Purple L3-93 x L131 20.7 34.5 31.6 10.3 3.4 L3-93 x L I -80 10.0 24.4 42.2 16.7 6.7 L8-3 x L l - 8 0 8.6 28. 6 22. 9 22.9 17.1 0K51 x L131 9.3 25.9 48.1 7.4 7. 4 Ll-171 x L131 20.0 20.0 30.0 20.0 10.0 W.S. x L21 81.5 7.4 L21 x W.S. 75 . 9 13.8 3.4 3. 4 3.4 14.3 14.3 42.9 28. 6 Parentage L9-39 x NC171 11.1 69 PLATE 8: Skin Color V a r i a t i o n o f Roots of D i f f e r e n t Seedlings in the Progeny o f the Cross L3-77 x L3-80 70 genes (C and R ) . Constantin s t a t e d t h a t purple appeared to be p a r t i a l l y dominant. These data i n d ic a t e several genes ar e involved and are a d d i t i v e in e f f e c t , with an absence of dominance, and the p o s s ib le presence of an i n h i b i t o r t h a t may be cytop las mic . I n h e r i ta n c e of Characters C o n t r i b u t i n g t o Bakinq Q u a l i t v The seedlings of each progeny were al s o rated f o r c e r t a i n q u a l i t i e s of th e baked f l e s h . The important q u a l i t y ch ar ac te rs c o n t r i b u t i n g to the baking index were c o l o r , moistness, fib e r. Color was div id ed sweetness, f l a v o r , f irm nes s and i n t o two p a r t s - i n t e n s i t y and u n i f o r m i t y . F i b e r , which was the only o b j e c t i v e measurement o f the baked roots was d i v i d e d as percentage f i b e r and f i b e r s i z e . mined by a n a l y t i c a l Percentage f i b e r was d e t e r procedures and f i b e r siz e was a vi su al c l a s s i f i c a t i o n o f the f i b e r s based on di am et er . I n h e r i t a n c e of Co lo r I n t e n s i t v Frequency d i s t r i b u t i o n o f number o f sweet p o t a t o seedlings o f each progeny in to c o l o r i n t e n s i t y classes centage in each cl ass is shown in Tab le 17 and the pe r is shown in Table 18. The1 c o l o r i n t e n s i t y of the baked roots was c l o s e l y c o r r e l a t e d w i t h the carotene content o f the raw roots as shown by the r value (+.9^0 in Table 35. s i m i l a r to t h a t shown f o r carotene content l in g s The data a r e very in the raw roots o f the seed in Table 13- Inher i tance of Color U n I f o r m i t y D i s t r i b u t i o n o f the see dling s o f each progeny i n t o d i f f e r e n t cl asses based on the u n i f o r m i t y o f the c o l o r in the baked roots is shown TABLE 17: 1 2 L3-80 x L3-77 2 1 L3-77 (X) 1 4 L3-77 x NCI71 2 1 L3-80 (X) 5 L3- 77t x NC171 5 Parentage Class* Frequency D i s t r i b u t i o n of Number of Sweet Potato Seedlings o f Each Progeny i n to D i f f e r e n t Classes Based on Color I n t e n s i t y of the Baked Roots 3 4 3 2 Progeny Mean Standard Error 5.0 0. 90 4.5 0.49 4.9 0.38 1 3.2 0.56 2 3.5 0.48 1.6 0.21 4.2 0. 45 5 6 7 8 2 1 1 3 6 3 1 1 8 6 1 I 1 9 1 10 1 5 1 3 2 16 5 4 4 L3-77t x L131 5 1 3 2 4 5 4 L3-77 x L I -80 2 5 4 8 10 10 21 14 5.6 0.23 L3-77 x K 8 3 3 6 13 3 4 1 3.9 0. 32 23 22 12 19 27 19 31 17 4 4.7 0.18 L3-80 x K 1 3 3 4 1 1 7 4 3 5.6 0.48 K x L3-77 5 1 3 1 2 2. 3 0.45 Kandee (X) L3-77 x L3-80 5 Continued TABLE 17: C o n tin u e d Progeny Mean Standard Error 3.6 0. 62 1 5-0 0.25 11 6 5.2 0.24 11 8 1 6. 2 0. 32 1 2 2 2 5. 7 0.11 6 3 5.4 0.4 5 2 1 4.9 0. 27 2.1 0.3 3 4.0 0.62 1 2 3 4 5 K x L3-80 2 1 1 2 3 L3-93 x LI31 1 6 6 7 17 7 7 5 L3-93 x L I -80 7 5 9 10 19 9 14 1 1 2 2 6 3 2 Parentaqe C la ss * 0 1 00 X _i 1 C*\ CO 1 LI -171 x LI 31 6 7 4 2 3 2 6 1 6 0K51 x L I 31 3 5 4 6 14 9 8 13 7 1 3 2 1 2 2 L9-39 x NC171 * 1 Color was rated on a numerical orange (or i d e a l ) . 9 1 L131 x L3-77 W.S. x L21 8 , 1 I 10 scale fro m I to 10 where 1 = White (or very l i g h t ) and 10 = Deep TABLE 18: Parentage C la ss * 1 Percentage of Sweet Potato Seedlings of Each Progeny in D i f f e r e n t Classes Based on Color I n t e n s i t y of Baked Roots 2 20 .0 10.0 L3-77 (X) 5.0 20.0 L3-77 x NC171 9. 5 4.8 L3-80 x L3-77 L3-80 (X) 38.5 L3-77t x NC171 27.8 Kandee (X) 3 4 15.0 9.5 5 6 8 7 20.0 10.0 10.0 30.0 30 .0 15.0 5.0 5.0 38.1 28.6 4.8 A. 8 7. 7 7.7 9 5.0 7. 7 38.5 5.6 16.7 11.1 55.2 17.2 13.8 13.8 L3 -7 7t x L131 20.8 4.2 12.5 8. 3 16.7 20.8 16.7 L3-77 x L I -80 2.7 6.8 5.4 10.8 13.5 13.5 28.4 18.9 L3-77 x K 19.5 7.3 7.3 14.6 31 .7 7.3 9.8 2.4 L3-77 x L3-80 13.2 12.6 6.9 10.9 15.5 10.9 17.8 9.8 2. 3 L3-80 x K 3.7 11.1 11.1 14.8 3.7 3.7 25.9 14.8 11.1 K x L3-77 41.7 8.3 25 .0 8.3 16.7 K x L3-80 20.0 10.0 10.0 20 .0 30.0 11.1 27.8 10.0 Cont i nued 10 TABLE 18: Parentage Class* 1 2 3 4 C o ntin u e d 5 6 7 8 9 L3-93 x L131 1.8 10.5 10.5 12.3 29.8 12.3 12.3 8.8 1.8 L3-93 x L I -80 7.8 5-6 10.0 11.1 21.1 10.0 15.6 32.2 6. 7 L8-3 x L I -80 2.9 2.9 5.7 5.7 17.1 8. 6 31 .4 22 .9 2. 9 20 .0 10.0 20.0 20.0 20.0 10.0 Ll-171 x L131 12.1 6.1 9.1 6.1 18.2 3.0 18.2 18.2 9.1 5.8 9.6 7-8 11.5 26.9 17.3 15.4 3.8 1.9 W.S. x L21 48.1 25 .9 3. 7 11.1 7.4 L9-39 x NCI71 14.3 14.3 28 .6 28.6 L131 x L3-77 0K51 x L I 31 * 3.7 14.3 Color was rated on a numerical scale from 1 to 10 where 1 = White orange (or i d e a l ) . (or very l i g h t ) and 10 = Deep 10 TABLE 19: Parentaqe Cl ass* 1 2 Frequency D i s t r i b u t i o n o f Number o f Sweet P o ta to S e e d lin g s Each Progeny i n t o D i f f e r e n t Classes Based on U n i f o r m i t y o f C o lo r o f th e Baked Roots 3 4 5 1 L3-80 x L3-77 6 7 8 9 2 2 4 1 30 in Progeny Mean Standard Error 6.9 0. 62 L3-77 (X) 2 3 2 8 5 6.6 0.29 L3-77 x NC171 1 3 8 3 6 6. 5 0.26 L3-80 (X) 2 4 2 4 1 6.7 0.43 6 6 3 1 2 6.3 0.31 2 3 4 6 5 7 6.8 0.35 4 2 6 5 5 2 6. 5 0. 32 L3 -7 7t x NC171 2 Kandee (X) L3 -7 7t x L131 L3-77 x L l -80 1 4 2 7 9 14 1 6.7 0.24 L3-77 x K 1 3 5 9 10 10 3 6.9 0.23 4 11 21 26 42 30 2 6.3 0. 12 3 5 3 2 13 1 6. 7 0.30 1 2 2 3 1 2 6.3 0.59 1 1 3 2 2 6.8 0. 66 1 L3-77 x L3-80 L3-80 x K 1 K x L3-77 K x L3-80 1 Cont i nued TABLE 19: C o ntinue d Progeny Mean Standard E rr or 2 e .b 0.21 9 6.7 0 .15 6 6. 3 0 .19 3 3 6. 5 0.A5 5 16 6 1 6.8 0 .1 9 15 9 lit 9 1 6.2 0 .19 W.S. x L21 6 5 5 8 3 6.9 0.26 L9-39 x NCI71 1 1 2 3 7.0 0.it4 2 3 b 5 6 7 8 9 2 2 2 9 8 19 13 3 2 13 18 2b 21 L8-3 x L I -80 2 6 9 12 L1—171 x L131 I 2 1 L131 X L3-77 1 b 2 Parentaqe L3-93 x L I 31 L3-93 x L I -80 0K51 x L I 31 * Class* 1 2 10 Color u n i f o r m i t y was rated on a numerical scale from 1 to 10 where 10 = E x c e l le n t u n i f o r m i t y of c o lo r and 1 - Extremely poor u n i f o r m i t y of colors TABLE 20: Parentage Cl ass* 1 2 Percentage o f Sweet P o ta to S e e d lin g s in Each Progeny in D i f f e r e n t Classes Based on U n i f o r m i t y o f C o lo r o f the Baked Roots 4 3 5 10.0 L3-80 x L3-77 * L3-77 (X) L3-77 x NCI71 L3-80 (X) 9 20.0 20.0 40 .0 10.0 10.0 40.0 25.0 4.8 14.3 38.1 14.3 28 .6 30 .8 15.4 30 .8 7-7 33.3 33.3 16.7 5.6 11.1 6.9 10.3 13.8 20.7 17.2 24.1 16.7 8.3 25-0 20 .8 20.8 8.3 L3-77 x L I -80 2. 6 10.5 5.3 18.4 23.7 36.8 2.6 L3-77 x K 2.4 7. 3 12.9 21 .9 24 .4 24 .4 7.3 2.9 8.0 15.3 19.0 30.7 21 .9 1.5 11.1 18.5 11. 1 7.4 48.1 3. 7 8.3 16.7 16.7 25.0 •00 L3-77t x L131 8 15.0 L3-77t x NCI71 6.9 7 10.0 15-4 Kandee (X) 6 16.7 10.0 10.0 30.0 20.0 20.0 L3-77 x L3-80 0.7 L3-80 x K K x L3-77 K x L3-80 8. 3 10.0 C o ntinued "J TABLE 20: C o n tin u e d 2 3 4 7 8 3. 5 3.5 3. 5 15.8 14.0 33.3 22 .8 3. 5 3.3 2.2 14.4 20.0 26.7 23-3 10.0 L8-3 x L1—80 5.7 17.1 25 .7 34.3 17.1 L1-171 x L I 31 10.0 20 .0 10.0 30.0 30.0 3.0 12.1 15.2 48 .5 18.2 3.0 3.8 28.8 17.3 26.9 17.3 1.9 W.S. x L21 22.2 18.5 18.5 29.6 11.1 L9-39 x NCI71 14.3 14.3 28.6 42.9 Parentage Cl ass * 1 L3-93 x L I 31 L3-93 x L I -80 L I 31 x L3-77 0K51 x L I 31 3.8 5 6 9 Color u n i f o r m i t y was rated on a numerical scale from 1 to 10 where 10 = E x c e l l e n t u n i f o r m i t y of c o l o r and 1 = Extremely poor u n i f o r m i t y o f c o l o r . 10 79 in Table 19 and the percentage o f seedlings in each class ' i n Table 20. A ll o f the pa re n ta l m a t e r ia l is presented had been subjected to s e l e c t i o n pressures in the past thus extremes in u n i f o r m i t y were not r e presented. As shown by the progeny means in Table 19, d i f f e r e n c e s be tween any two progenies were not pr es e nt . W it h in i n d i v i d u a l progenies d i s t r i b u t i o n was very uniform over a r a t h e r narrow range. were skewed toward the r i g h t , o r toward g r e a t e r u n i f o r m i t y , ed to f i t a normal d i s t r i b u t i o n curve. o f co lo r is c o n t r o l l e d by several This The data but appear i n d ic at es t h a t u n i f o r m i t y genes t h a t are a d d i t i v e in e f f e c t and segregate t r a n s g r e s s i v e l y . Inher i tance o f Moi stness Frequency d i s t r i b u t i o n o f the number o f sweet potat o seedlings o f each progeny into d i f f e r e n t moistness classes is presented in Table 21 and the percentage o f each pop ulatio n in each class is given in Table 22. The progeny means ranged from 4 . 6 to 7-1 and any given mean us u al ly fe ll between t h a t o f each o f the two p ar en ts . used as the male, the progeny mean c l o s e l y approached i t . the high paren t was used as the female, a mid -p o in t between the two p a r e n ts . duals we ll When the high parent was above and other s well However, if the mean o f the progeny f e l l at In each progeny there were i n d i v i below the mean o f e i t h e r p a r e n t. This in d ic a t e s t h a t moistness is a q u a n t i t a t i v e ch a ra ct er c o n t r o l l e d by se vera l genes segregating t r a n s g r e s s 5v e l y . Dominance was not ev i d e n t, and the e f f e c t o f the genes appeared to be a d d i t i v e . As shown by the r values in Table 35, moistness was r a t h e r c lo s e l y r e l a t e d to several ness and f l a v o r factors. ( r = + .4 01 ) Carotene and moistness (r = + . 6 0 1 ) , mo is t and moistness and firmness (r = +.6 92 ) were TABLE 21; Parentaqe Class * 1 2 Frequency D i s t r i b u t i o n o f Number o f Sweet P o ta to S e e d lin g s o f Each Progeny i n t o D i f f e r e n t C lasses Based on M o is tn e s s o f th e Baked Roots 3 4 5 6 2 L3-80 x L3-77 L3-77 (X) 1 L3-77 x NCI71 3 L3-80 (X) 2 L 3- 77 t x NCI 71 Progeny Mean Standard E rror 1 7.1 1.97 7 8 9 2 5 10 1 2 2 5 3 3 6.2 0.49 3 5 2 4 2 2 5.6 0.47 2 2 3 3 1 4.8 0.56 1 5 4 2 4 1 1 5.0 0.50 Kandee (X) 1 2 3 5 6 8 2 2 5.9 0.32 L3 -7 7t x L131 1 3 3 2 4 6 5 6.8 0.40 L3-77 x L I -80 2 L3-77 x K L3-77 x L3-80 L3-80 x K 4 3 1 1 1 16 18 24 8 3 6.6 0.18 2 1 2 7 5 13 6 5 6.4 0.28 14 10 19 21 30 44 29 3 5.8 0.15 3 1 2 2 3 6 9 1 6.2 0.41 3 3 1 3 6.8 0.51 1 2 2 1 6. 3 0. 56 K x L3-77 2 K x L3-80 2 2 Cont i nued TABLE 21: Class * 1 2 L3-93 x L131 1 L3-93 x L1-80 2 Parentaqe L8-3 x L I -80 2 4 1 5 4 1 Progeny Mean Standard Error 5 6.5 0.26 17 7 6. 3 0. 20 9 9 2 6. 2 0.33 1 7 1 6.5 0.33 9 6 3 3 2 4 4 3 7 8 9 9 14 16 15 11 28 b 3 1 L1-171 x L131 C o ntinue d 10 L131 x L3-77 1 1 3 1 2 6 6 10 3 6.4 0. 37 0K51 x L I 31 1 2 2 2 2 5 10 16 12 7.0 0.28 W.S. x L21 1 2 4 5 7 3 5 4.6 0.33 1 1 7.1 0.63 L9-39 x NCI71 1 * scale from 1 to 10 where 1 = Very dry and 10 = Very moist. Moistness was rated on a numerical 3 1 TABLE 22: Parentage Percentage o f Sweet P o ta to S e e d lin g s o f Each Progeny In D i f f e r e n t Classes Based on M o is tn e s s o f th e Baked Roots 2 Cl ass* I 3 4 5 6 7 8 20.0 50.0 10.0 9 ' I 20.0 L3-80 x L3-77 5.0 L3-77 (X) 15.0 5.0 10.0 10.0 25.0 15.0 15.0 14.3 23 .8 9. 5 19.0 9-5 9. 5 23.1 23.1 7.7 11.1 22.2 5.6 5. 6 14.3 L3-80 (X) 15.4 15.4 15.4 L3-77t x NCI7 1 5. 6 27.8 22 .2 Kandee (X) 3.4 6.9 10.3 17.2 20.7 27.6 6.9 6.9 L3-77t x L131 4.2 12.5 12.5 8.3 16.7 25 .0 20.8 2. 7 L3-77 x K L3-77 x L3-80 L3-80 x K 2.3 1.4 1.4 1.4 21 .6 24.3 32.4 10.8 4.1 4.9 2.4 4.9 17.1 12.2 31.7 14.6 12.2 8.0 5.7 10.9 12.1 17.2 25.3 16.7 1.7 11.1 3. 7 7.4 7.4 11.1 22.2 33.3 3. 7 25 .0 25.0 25.0 10.0 20.0 20.0 10.0 K x L3-77 16.7 K x L3-80 20.0 20.0 Continued • L3-77 x L I -80 00 L3-77 x NCI71 5 TABLE 22: Parentage Cl ass* 1 C o ntinue d 2 3 4 5 6 7 8 9 10 8.8 L3-93 >< LI 31 1.8 1.8 8.8 5.3 5.3 15.8 15.8 24.6 28.1 L3-93 >< L I -80 2. 2 A.A 2.2 4.4 16.7 12.2 31.1 18.9 7.8 2.9 11.4 8. 6 11.4 8.6 25.7 25-7 5-7 10.0 70.0 10.0 L8-3 x L I -80 10.0 LI -171 x L I 31 LI 31 X L3-77 3. 0 3.0 9.1 3.0 6.1 18.2 18.2 30.3 9.1 0K5I x L131 1.9 3.8 3.8 3. 8 3.8 9.6 19.2 30.8 23.1 W.S. x L21 3.7 7.4 14.8 18.5 25 .9 11.1 18.5 14.2 14.2 42.9 14.2 L9-39 >< NCI71 * 14.2 Moistness was rated on a numerical scale from 1 to 10 where 1 = Very dry and 10 = Very moist. CD 84 p o s i t i v e l y c o r r e l a t e d , w h il e dry m at te r and moistness (r = - . 5 7 2 ) were negatively correlated. ship was n e g a t i v e . In r e a l i t y , the moistness and firmness r e l a t i o n As the firmness score increased from 1 to 5 the p r o duct became less f i r m , thus i f a baked root r a t e d high in moistness, also r at ed high in f ir m n e s s , i n d i c a t i v e of a s o f t ro ot . it The negative a s s o c i a t i o n between dry matter and moistness ( r = - . 5 7 2 ) was as one would ex pe ct ; fo r example, the lower the dry m a t t e r , moistness and the hi gh er the moistness score, root. The moistness and f l a v o r a s s o c i a t i o n the hi g h er the the s o f t e r was the baked (r = + .4 01) i n d i c a t e d the panel ass oci ate d good f l a v o r with moistness which has been described as being a t y p i c a l (40, 43, 44, r e a c t i o n o f t a s t e panels in the southern U n it e d States 112). Inheri tance o f Flavor _ The data showing the d i s t r i b u t i o n o f the number of sweet potato seedlings o f each progeny into d i f f e r e n t f l a v o r classes are presented in Table 23 and the percentage o f seedlings in each class Table 24. (Table 2 ) . is given in The f l a v o r d i f f e r e n c e s among the pa re n ts were q u i t e The progeny means in T ab le 23 v a r i e d c on si d er ab ly . large In a l l crosses the progeny mean va r ie d from a point approaching the mean o f the parents to well below t h a t of the low parent. Very few i n d i v i d u a l s in any given progeny possessed a f l a v o r superior t o t h a t of the b e t t e r pa rent but many had a f l a v o r i n f e r i o r to th at o f the poorer p a r e n t . Transgressive segregation occurred in a l l crosses. nature o f f l a v o r and the personal preferences o f The s u b j e c t i v e in di v id u a l panelists makes ac cu ra te c l a s s i f i c a t i o n o f f l a v o r d i f f i c u l t but the d at a obtained i n d i c a t e t h a t d e s i r a b l e f l a v o r is a recessive t r a i t . Co-variance TABLE 23: Parentaqe Class * 1 2 Frequency D i s t r i b u t i o n o f Number o f Sweet P o ta to S e e d lin g s o f Each Progeny i n t o Classes Based on F la v o r o f th e Baked Roots 3 4 5 6 7 8 2 Zi 1 2 9 10 Progeny Mean Standard Error 6.1 0.47 L3-80 x L3-77 1 L3-77 (X) 1 3 8 7 1 5.2 0.21 3 4 b 7 1 4.7 0.32 2 b 5 2 4.5 0. 36 2 7 2 3 3 5.1 0. 36 2 6 8 10 3 5.2 0.21 2 5 1 7 5 4.7 0.40 6 34 22 9 5.4 0.13 5.2 0.21 2 L3-77 x NC171 L3-80 (X) L3 -7 7t x NCI71 ' Kandee (X) L3-77t x L I 31 2 2 L3-77 x L l - 8 0 1 2 L3-77 x K L3-77 x L3-80 L3-80 x K 2 1 4 8 8 14 6 9 25 28 bl 40 24 4 5.0 0. 12 7 7 6 4 2 5.4 0. 27 2 4 6 5.3 0. 22 2 5 1 4.9 0.35 1 K x L3-77 K x L3-80 1 1 1 C o ntinued TABLE 23: Parentaqe Class* 1 2 L3-93 x L131 L3-93 x L I -80 3 L8-3 x L I -80 0K51 x L I 3 T W.S. x L21 L9-39 x NCI71 * 1 Progeny Mean Standard E rr or 5. 2 0. 16 b 5-3 0. 15 6 2 5-7 0.21 2 b 1 6.6 0.13 5 6 7 10 18 13 10 9 U . 22 28 13 2 b 8 13 1 1 4 6 ? L I - 171 x L131 L I 31 x L3-77 C o n tin u e d . 8 9 1 10 1 2 b 8 11 5 2 5. 5 0.24 1 2 12 13 16 b 3 5.2 0.20 2 6 7 9 3 4.2 0. 22 I 2 2 1 4.9 0.50 1 Flavor was rated on a numerical scale from 1 to 10 where 1 = Very poor f l a v o r and 10 = Ex c e l le n t flavor. TABLE 24: Parentage Class* I 2 Percentage o f Sweet Potato Seed 1ings of Each Progeny in D i f f e r e n t Classes Based on Fl av or of the Baked Roots 4 3 10.0 ■. 6 7 20.0 40.0 10.0 15.0 40.0 35.0 5.0 14.3 19.0 19.0 33.3 4.8 L3-80 (X) 15.4 30.8 38.5 15.4 L3-77t x NC171 11.1 38.9 11.1 16.7 16.7 6.9 20.7' 27 .6 34.5 10.3 20 . 8 4.2 29.2 20.8 8.1 45.9 29.7 12.2 L3-77 (X) L3-77 x NC171 9.5 Kandee (X) L3-77t x L131 8.3 8. 3 L3-77 x L ! -80 1 .k 2.7 L3-77 x K L3-77 x L3-80 L3-80 x K 1.1 • 5.0 00 L3-80 x L3-77 5 8 ■ 20.0 5.6 2.4 9.8 19.5 19.5 34.1 14.6 5.2 14.4 16.1 24.1 22.9 13.8 2.3 25 .9 25.9 22.2 14.8 7.4 16.7 33.3 50.0 3-7 K x L3-77 K x L3-80 10.0 20.0 50 .0 10.0 10.0 L3-93 x L131 10.5 17.5 31.6 22.8 17.5 C o ntin u e d TABLE 24: Parentage Cl ass * 1 L3-93 x L I -80 2 3.3 L8-3 x L I -80 3 0K51 x L I 31 W.S. x L21 L9-39 x NCI71 * 1.9 5 6 7 8 10.0 12.2 24.4 31.1 14.4 4.5 5.7 11.4 22 .9 37.1 17.1 5. 7 10.0 10.0 20.0 40. 0 10.0 LI-171 x L131 L131 x L3-77 4 C o n tin u e d 3. 0 6.1 12. 1 24 .2 33.3 15.2 6.1 1.9 3.8 23.1 25 .0 30 .8 7. 7 5.8 7.4 22 .2 25.9 33-3 11.1 14.3 28.6 28.6 14.3 14.3 Flavor was rated on a numerical scale from 1 to 10 where 1 = Very poor f l a v o r and 10 = E x c e l l e n t flavor. TABLE 25: Parentaqe Class* 1 L3-80 x L3-77 2 L3-77 x L I -80 2 L3-77 x K K x L3-77 1 2 2 4 l 2 9 10 Progeny Mean Standard Error 5.9 0. 62 5.1 0. 26 6 5 1 6 5 4.6 0.33 3 5 4 1 4.2 0.26 3 7 3 2 3 1 5 9 9 > 5 5.4 0. 20 2 5 3 6 4 4.6 0.38 1 9 30 22 10 5.2 0.14 4 2 9 8 15 3 5.2 0. 22 14 22 35 42 34 18 M . 0.12 2 1 7 7 4 6 5.0 0.28 4 5 1 5.7 0.36 Kandee (X) 2 7 8 6 1 L3-77t x L I 31 6 4 L3-80 (X) L3-77t x NCI71 5 2 4 L3-77 x NCI71 L3-80 x K ? 4 1 L3-77 (X) L3-77 x L3-80 Frequency D i s t r i b u t i o n o f Number o f Sweet P o ta to S e e d lin g s o f Each Progeny i n t o D i f f e r e n t C lasses Based on Sweetness o f th e Baked Roots 2 1 1 7 1 k‘1 0. 36 Cont i nued CD VO TABLE 25: Parentaqe C la ss * 1 2 K x L3-80 C o n tin u e d 5 6 7 1 4 2 2 3 4 l 8 9 10 Progeny Mean Standard Er ro r 5. 3 0.40 L3-93 x L131 1 9 7 19 14 5 2 5.0 0.18 L3-93 x L I -80 4 5 16 19 27 14 5 5.4 0. 1 5 4 2 11 9 7 2 5.5 0.23 4 1 2 6.4 0.52 L8-3 x L I -80 2 Ll-171 x L131 l • 1 4 3 9 8 7 1 5.3 0.26 0K51 x L I 31 1 1 2 12 15 15 6 6.1 0.1 8 W.S. x L21 2 6 8 9 2 4.6 0.21 I 2 1 2 5.0 0.53 L131 x L3-77 L9-39 x NCI71 * • 1 Sweetness was rated on a numerical scale from 1 to 10 where 1 = B i t t e r and 10 = Very sweet. TABLE 26: Parentage Class* L3-80 x L3-77 1 2 Percentage o f Sweet P o ta to S e e d lin g s o f Each Progeny in D i f f e r e n t Classes Based on Sweetness o f th e Baked Roots 3 4 10.0 2.7 40.0 10.0 23.8 4.8 28.6 23 .8 23.1 38.5 30.8 7.7 16.7 38 .9 16.7 11.1 16.7 3.4 17.2 31. 0 31.0 17.2 8.3 20. 8 12.5 25.0 16.7 1.4 12.2 40.5 29.7 13.5 9.8 4.9 21.9 19.6 36 .6 7.3 8.0 12.6 20,1 24.1 19.5 10.3 7.4 3.7 25 . 9 25.9 14.8 22 .2 33.3 41 .7 8. 3 40.0 20 .0 20.0 Kandee (X) L3-77 x L I -80 20.0 30 .0 5.6 8. 3 20.0 30 .0 L3-80 (X) L3-77t x L I 31 7 20.0 19.0 L3 -77t x NCL71 6 10.0 L3-77 (X) L3-77 x NC171 5 8. 3 8 10.0 5.6 < L3-77 x K L3-77 x L3-80 L3-80 x K 0.6 K x L3-77 8.3 K x L3-80 10.0 10.0 4.0 8.3 Cont i nued TABLE 26: Parentage Cl ass * 1 2 3 4 C o n tin u e d 5 6 7 8 L3-93 x LI 31 1.8 15.8 12.3 33.3 24.6 8.8 3.5 L3-93 x L I -80 4.4 5.6 17.8 21.1 30.0 15.6 5.6 11 .4 5-7 31.4 25-7 20.0 5.7 40.0 10.0 20.0 3.0 L8-3 x L I -80 20 .0 LI-171 x L131 L I 31 x L3-77 0K51 x LI 31 I W.S. x L21 L9-39 x NC171 * 1.9 3.0 12.1 9.1 27.3 24. 2 21.2 1.9 3.8 23.1 28 . 8 28.8 11.5 7.4 22.2 29 .6 33.3 7.4 14.3 28 .6 14.3 28.6 9 14.3 Sweetness was rated on a numerical scale from 1 to 10 where I « B i t t e r and 10 = Very sweet. 10 93 analyses i n di c at ed t h a t carotene and f l a v o r and f l a v o r flav o r (r = + . 217) and moistness (r = + . 4 0 1 ) were p o s i t i v e l y ass oci ate d w h i l e dry m at te r and (r = -.1 2 2 ) appeared to be n e g a t i v e l y associated (Table 3 5 ) . Inher i tance o f Sweetness Data showing the frequency d i s t r i b u t i o n o f the see dlings o f each progeny f o r sweetness o f the baked roots i n t o d i f f e r e n t classes are shown in Table 25 and the percentage o f se ed lin gs in each class in T ab le 26. Kandee, L3-77 and L3-80 were crossed in a l l b i n a t i o n s with one ano the r. is given p o s si b le com In a d d i t i o n the cross o f L3-77 * L 131 and its ' r e ci pr oc al were made. In each of these crosses, when a parent high in sweetness was used as the male the progeny mean score f o r sweet ness was higher than when the p ar en t low in sweetness was used as the male. In each progeny the mean score f o r sweetness was e i t h e r d i a t e compared to the parents o r i n f e r i o r to the poorer p a r e n t . g r e s s i v e seg regation occurred as shown by the presence, interme Trans- in each progeny, o f see dlings r at ed hi gh er and seedlings r a t e d lower than e i t h e r p a r e n t. Sweetness and f l a v o r had a close r e l a t i o n s h i p as shown in Tab le 35 by the c o r r e l a t i o n c o e f f i c i e n t al s o p o s i t i v e l y c o r r e l a t e d dered w ith e a r l i e r research (r = + . 8 1 9 ) . ( r = + . 676) . Moistness and sweetness were Thi s r e l a t i o n s h i p , when consi (40, 44, 57, 5 8 , tance o f c e r t a i n enzyme systems. Sweetness, 112) suggests the i n h e r i like fla v o r, is apparently a re ce s s i v e c h a r a c t e r . In h er i tance o f F i rmness The frequency d i s t r i b u t i o n o f the sweet potat o seedlings o f each progeny into d i f f e r e n t classes based on the firmness o f the baked roots is presented in Ta b le 27. The percentage o f seedlings in each class is TABLE 27: Frequency D i s t r i b u t i o n o f Number o f Sweet P o ta to S e e d lin g s o f Each Progeny i n t o D i f f e r e n t C lasses Based on F irm n e s s * o f the Baked Roots Class Parentage 5 Very Fi rm V ery Fi rm L3-80 x L3-77 Medium Soft So ft Progeny Mean Standard Er ror 3 2 5 4.3 0.51 L3-77 (X) b 5 3 b 3. 0 0.32 L3-77 x NC171 7 7 3 b 3.2 0.25 1 1.9 0. 37 2.6 0. 2 6 2 2. 7 0.16 L3-80 (X) 6 3 2 1 L3- 77t x NC171 3 7 3 5 Kandee (X) 1 15 L3-77t x L131 8 L3-77 x L l - 8 0 L3-77 x K L3-77 x L3-80 L3-80 x K K x L3-77 11 b 5 10 3.8 0. 26 7 9 1b 3.8 0 . 19 2 11 12 9 7 3-2 0.18 13 37 37 32 18 3.0 0.10 5 7 8 6 3.5 0.2 2 b 3 b 3.8 0. 30 Cont i nued vo -c- TABLE 27: Class Parentaqe 1 Very Firm 2 3 F i rm Med i urn C o n tin u e d 4 Soft 5 Very S o ft Progeny Mean Standard Error 4 2 3 3.6 0. 40 10 11 16 15 3-5 0.17 10 15 22 31 12 3. 2 0 .13 L8-3 x L I -80 3 3 12 10 7 3.4 0.20 LI -171 x L131 1 1 2 3 3 3. 6 0.43 L 13 1 X L3-77 5 3 10 7 8 3.3 0.24 0K51 x L I 31 4 6 20 13 9 3.2 0. 16 W.S. x L21 8 8 8 3 2. 2 0.19 2 3 1 3.1 0. 40 K x L3-80 1 L3-93 x L I 31 5 L3-93 x L I -80 L9-39 x NCI71 * 1 Firmness class values were obtained using the ASCO firmness meter. 96 TABLE 28: Class Parentaae Percentage o f Sweet Potato Seedlings of Each Progeny in the D i f f e r e n t Classes Based on Firmness* of the Baked Roots 1 Verv Firm 2 F i rm 3 Med i urn 1 4 S o ft 5 Very So ft 30. 0 20.0 50 . 0 20.0 25.0 15.0 20.0 33.3 33.3 14.3 19.0 46.2 23.1 15.4 7.7 7-7 16.7 38 .9 16.7 27.8 Kandee (X) 3.4 51. 7 37-9 L3 -7 7t x L131 4.2 16.7 16.7 20.8 41.7 21.1 18.4 23.7 36.8 L3-30 x L3-77 L3-77 (X) 20.0 L3-77 x NCI71 L3-80 (X) L3 -7 7t x NC171 L3-77 x L I -80 6.9 L3-77 x K 4.9 26 .8 29.3 21.9 17.1 L3-77 x L3-80 9.5 27.0 27 .0 23.4 13-1 L3-80 x K 3.7 18.5 25.9 29.6 22.2 8.3 33.3 25.0 33-3 40.0 20.0 30.0 K x L3-77 K x L3-80 10.0 8.8 17.5 19.3 28.1 26.3 *11.1 16.7 24 . 4 34.4 13.3 8.6 8.6 34.3 28.6 20.0 L 1- 171 x L 131 10.0 10.0 20 .0 30.0 30.0 L I 31 X L3-77 15.2 9.1 30.1 21.2 24.2 0K51 X L i 31 7.7 11.5 38.5 25.0 17-3 29.6 29 .6 29 . 6 11.1 28.6 42.9 14.3 L3-93 x L I 31 L3-93 x L I -80 L8-3 x L i - 8 0 W.S. x L21 L9-39 x NC171 14.3 * Firmness class values were obtained using the ASCO firmness meter. given in Table 28. stances they f e l l a suprisingly The progeny means v a r i e d widely but in most i n between t h a t o f the two pa r e n ts . large number o f i n d i v i d u a l s were in classes k and 5 , which in d ic a t e d r a t h e r s o f t r o o t s . w e ll In most progenies, In several above 50 per cent o f the progeny. cases t h i s number was This skewing o f the data is exp laine d by s e l e c t i o n pressure e xe rte d throughout the breeding pro gram to o b t a i n roots t h a t were s o f t when baked. W h i te s ta r a*>d L2T were not developed f o r baking purposes and both parents were f i r m when baked. When these two paren ts were crossed, the progeny x L21) mean was 2 . 2 or f i r m . Approximately 60 per cent of the progeny was c l a s s i f i e d as e i t h e r f i r m or very f i r m . were c l a s s i f i e d as medium in fir m nes s. x L3-80 and i t s 1 r e c i p r o c a l (W.S. Kandee, L3-80 and NC171 The progeny o f the cross Kandee di d not appear to d i f f e r from the progenies o f s o f t or very Soft par en ts ; however, both p ar en ts , when s e l f e d , pro duced progenies w it h roots t h a t were f i r m when baked. In most pr o genies there were seedlings w it h roots t h a t were s o f t e r and seedlings w it h roots t h a t were f i r m e r than e i t h e r paren t when baked. The c o r r e l a t i o n c o e f f i c i e n t s are presented in Table 35- There was no r e l a t i o n between shape and firmness (r = + .0 2 3 ). te x thickness had an r value o f - . 1 3 6 , s i g n i f i c a n t a t the 1 per cent le v e l but i t was o f a low magnitude. and firmness, correlated. Carotene and fir m nes s, dry matter and moistness and firmness were a l l Carotene and firmness Firmness and cor ( r = + .5 1^ ) fa irly c lo s e l y and moistness and f i r m ness ( r = + .6 9 2 ) were p o s i t i v e l y ass oc ia te d, which i n d ic at es t h a t as carotene or moistness increases the roots become less f i r m . and firmness Dry matter ( r = - . 5 ^ 1 ) were n e g a t i v e l y associated o r as dry ma tter increased the roots became more f i r m . Although firmness and f i b e r 1 2 L3-80 x L3-77 \D O 1 m o CA 2 5 6 7 00 in CM 0• I LTV CM 1 1 O cm 1 00 o' 1 2 2 CM 1 CM 1 00 • o 1 O o Standai Err or 0.746 .542 1.907 .627 1.216 .390 1 2 3 A 2 5j 2 6 2 1 1 2 1 1 1.710 .884 2 1 1 2 8 2 1.086 .526 2 1 4 3 3 4 5 1.503 .907 2 1 1 2 2 A 5 3 1.503 .907 3 2 5 2 6 17 19 11 6 2 1.204 .111 1 1 1 3 7 4 5 5 12 2 1.097 .173 20 8 12 11 33 25 20 22 20 A 1.402 1 3 1 1 3 4 5 7 2 0.926 .101 2 L3-77 x NCI71 1 1 L3-80 (X) 2 2 L3-77 1 x NCI71 2 Kandee (X) 5 L 3- 77 t x L131 4 L3-77 x L I -80 L3-77 x K 1 2 Continued LA 6 00 o 1 Progeny Mean 1 2 L3-80 x K 10 5 L3-77 (X) L3-77 x L3-80 9 4 3 -aPer Cent ^ Fiber ^r Percentage ^ oo Class Frequency D i s t r i b u t i o n o f Number o f Sweet P o ta to S e e d lin g s o f Each Progeny i n t o D i f f e r e n t C lasses Based on P ercentage F i b e r i n th e Baked Roots 0.6-0.8 TABLE 29: ^ oo TABLE 29: Class Per Cent F ib er Parentage 1 ^ oi 2 7/ « -S'• 0*4 6 • CM • C-J I 0D * 4 oo 1 in K x L3-77 5 vn • C o n tin a e d 6 CM • CM « 1 1 O• 2 2 1 7 o • 1 oo * o fl" OO • o i vD • O 3 9 10 0 1 cn o m • 0 1 o * o it ] 0.760 . 110 it 1 l.W t .791 vO • Progeny Mean Standard Err or K x L3-80 1 L3-93 x L13I 8 2 5 4 10 6 6 10 5 1 1.409 .111 L3-93 x L I -80 6 1 2 2 7 16 6 19 25 6 1.050 .117 L8-3 x L I -80 1 1 4 5 5 6 it 9 1.049 .102 LI-171 x LI31 2 1 I 1 2 3 1.601 .141 L131 x L3-77 7 2 2 3 3 3 2 5 5 1.516 .173 0K51 x L131 9 4 3 11 7 2 7 it it 1.861 .195 L9-39 x NCI71 1 3 1 W.S. x L21 1 3 it 4 3 5 1 1 1 1 1.249 .863 8 1 1.013 .119 vo vo Class Per Cent Fi b er Parentage 2 1 3 -d- 0. 3 CM 1 -T » CM CM 1 CO 4 5 00 LA 1 LA 1 CM CM 7 JO.O L3-80 x L3-77 L3-77 (X) Percentage o f Sweet Potato Seedlings o f Each Progeny in D i f f e r e n t Classes Based on Percentage F i b e r in the Baked Roots 1.0-1.2 TABLE 30: ■ 9 10 CO v£> 0 O CTi 0 1 0* 0 1 00 1 VO CA o’ 0 O * 20.0 20.0 50.0 10.0 5-0 30.0 5.0 10.0 15.0 19.0 9-5 23.8 9.5 28.6 12.5 6. 3 6.3 12.5 6.3 10.5 5.3 5.3 10.5 42.1 10-5 6.9 3 -4 13.8 10.3 10.3 13.8 17.2 10.0 10.0 0 8 5.0 4.8 4.8 L3-80 (X) 12.5 12.5 L3-77t x NCI71 10.5 Kandee (X) 17.2 L3-77t x L131 16.7 8.3 4.2 4.2 8.3 8. 3 16.7 20.8 12.5 L3-77 x L I -80 4.1 2.7 6.8 2.7 8. l 22 .9 25.7 14.9 8.1 2. 7 L3-77 x K 2.4 2.4 2.4 7.3 17.1 9.8 12.2 12.2 29-3 4.9 11.4 4.6 6.9 6.3 18.9 14.3 11.4 12.6 11.4 2.3 3.7 3.7 11.1 14.8 18.5 25 .9 7-4 L3-77 x NC171 L3-77 x L3-80 L3-80 x K 3.7 6.3 11.1 Conti nued 6.3 6.9 TABLE 30: Class Per Cent Fi be r Parentage 1 CL 2 -cr CM 1 • CM 3 .• cM 1 OO • CM C o ntinue d 4 5 oo — 1 IA —* LT\ K x L3-77 6 7 8 9 10 CM o — _ 00 o 1 vD O 1 CA O rA O 1 O « o 33.0 8. 3 40.0 10.0 * 1 CM —' 16.7 1 O * 1 00 o o 25-0 16.7 10,0 VO K x L3-80 10.0 L3^93 x L I 31 13.8 3. 4 8. 6 6.9 17.2 10.3 10.3 17.2 8. 6 1.7 L3-93 x L I -80 6.7 1.1 2. 2 2.2 7.8 17.8 6. 7 21.1 27.8 6.7 L8-3 x L I -80 2.9 2.9 11.4 14.3 ’4.3 17.1 11.4 25.7 L I -171 x L131 20.0 10.0 10.0 10.0 20.0 LT31 x L3-77 21 .2 6.1 6.1 9.1 9.1 9.1 6. l 15.2 15-2 0K51 x LI 31 16,7 7.4 5-6 20 .4 13.0 3. 7 13.0 7.4 7.4 L9-39 x NCI71 14.3 42.9 14.3 11.1 14.8 Whi t e s t a r x L21 3.7 14.8 30.0 18.5 30.0 3. 7 3.0 14.3 14.3 29 .6 3-7 102 content had a s i g n i f i c a n t r value, + . 0 9 9 . practical it is too low to be o f a val ue. Firmness, l i k e ca r o t en e , dry m a t te r and moistness, appeared to be a q u a n t i t a t i v e ch a ra c t e r c o n t r o l l e d by several transgressively. genes, segregating The high r values in the a s s o c i a ti o n o f some charac t e r s could i n d i c a t e some l in k ag e. Inher i tance o f F i ber The frequency d i s t r i b u t i o n o f the sweet p o t a t o seedlings o f each progeny in to d i f f e r e n t classes based on the percentage f i b e r in the baked roots is presented in Table 29 and the percentage o f seedlings in each class is given in Tab le 30. In every progeny the mean f i b e r content was higher than the parent w it h the g r e a t e s t f i b e r con tent; however, th ere were some seedlings w i t h with the lowest f i b e r c o n te n t. less f i b e r than the parent The p a r e n ta l l i n e s ranged in f i b e r con t e n t from a low o f 0.301 per cent to a high o f 2). 1.106 per cent Several progenies contained i n d i v i d u a l s w it h (Table less than 0 . 2 0 per cent f i b e r and one i n d i v i d u a l in the progeny o f L3-77 s e l f e d contained more than 13 per cent f i b e r . Three p a r e n t s , Kandee, L3-77 and L3-80 were s e l f e d and crossed in a l l p o s si b le combinations w it h one another. In the s e l f e d progenies the mean f i b e r content was from 3 to k times t h a t o f the p a r e n ts . cal, In the cross o f Kandee x L3-77 and i t s * recipro the female appeared to e x e r t a st ro nge r i n fl u e n c e on the f i b e r content o f the progeny. The male p a r e n t appeared to have the g r e a t e r i n f l u e n c e in the cross Kandee x L3-80 and i t s ' r e c i p r o c a l and in the cross L3-77 * L3-80 and i t s 1 r e c i p r o c a l . F i b e r content appeared to be a q u a n t i t a t i v e c h a r a c t e r c o n t r o l l e d PLATE 9: F i b e r Content in 25 Grams of Baked Root Tis sue in Each o f Two Seedlings o f L3-1 7 x Kandee Progeny. S ee dl ing w it h Lowest F i b e r Content ( l e f t ) and S ee dl ing w it h Highest F i b e r Content ( r i g h t ) 104 by several genes, geometric in e f f e c t , segre gat ing t r a n s g r e s s i v e l y . A l l o f the parents used in t h i s study were apparently very h e t e r o z y gous f o r f i b e r . No maximum l i m i t has been e s t a b l i s h e d f o r an acc ept a ble f i b e r content in sweet p o t a t o e s . Sc h m it t, e t a^ (91) proposed a l i m i t o f 0 . 5 per cent f o r asparagus. Several o f the parents in t h i s study were commercial con ten t. sweet p o t a t o v a r i e t i e s and they v a r i e d in f i b e r Kandee was the lowest w it h 0.301 per cent f i b e r and NC171 (Nugget) was the h i g h e s t with 1.1 06 per cent f i b e r . contained 0.631 per cen t f i b e r , L8-3 ( J u l i a n ) L 3 - 77 (C en te nn ial ) contained 0.775 per cent f i b e r and W h i te s ta r contained 0.741 per cent f i b e r . I f a maximum f i b e r content was e s t a b l i s h e d between 0 . 5 0 and 0 . 7 5 the p l a n t breeder would have no major problem in s e l e c t i n g seedlings with low f i b e r con ten t as shown by the number o f seedlings 30). P l a t e 9 shows th e t o t a l in classes 8 , 9 and 10 (Tables 29 and amount of f i b e r from a 25 gram sample of baked root t is s u e removed from the lowest and highest i n d i v i d u a l s o f the progeny L3-77 x Kandee. P i a t e 10 is s i m i l a r to P l a t e 9 except the see dlings are from the progeny of 0K51 x L 131 The frequency d i s t r i b u t i o n o f the sweet potato seedlings o f each progeny i n t o d i f f e r e n t f i b e r s i z e classes is given in Table 31 and the percentage o f se ed lin gs in each class is given in Table 32. The f i b e r s were c l a s s i f i e d f o r s i z e based on the approximate diameter o f the i n d i v i d u a l f i b e r s as i l l u s t r a t e d in P l a t e The length o f the i n d i v i d u a l f i b e r s was not considered in t h i s study. In most progenies the mean f i b e r s i z e was between t h a t of the two parents and was u s u a ll y nearer t h a t of the female p a r e n t . geny t h er e were see dl in gs w it h f i b e r s those o f the p a r e n t s . l a r g e r and s m a l le r In each pro in s iz e than In most progenies the number l a r g e r than t h a t of PLATE 10: F i b e r Content in 25 Grams o f Baked Root Tissue in Each of Two Seedlings o f 0K51 x L131 Progeny. Seedling w i t h Lowest F i b e r Content ( l e f t ) and Seedling w i t h Highest F i b e r Content ( r i g h t ) TABLE 31: Class Parentage 1 Very Coarse Frequency D i s t r i b u t i o n o f Number o f Sweet P o ta to S e e d lin g s o f Each Progeny i n t o D i f f e r e n t Classes Based on F i b e r S iz e 2 Coarse 3 Medium 4 Fine 5 Ve ry F i ne Progeny Mean Standard Error L3-80 x L3-77 1 2 4 2 1 3.0 0.37 L3-77 (X) 3 2 5 8 2 3. 2 0.28 L3-77 x NCI71 3 6 6 3 3 2.9 0.28 L3-80 (X) 4 3 3 3 2.4 0.33 L 3- 77 t x NCI71 1 5 6 5 1 2.8 0.24 Kandee (X) 7 7 9 5 1 2.5 0.21 L 3- 77 t x L I 31 4 6 7 5 2 2.8 0. 2 5 L3-77 x L I -80 2 7 11 10 8 3.4 0.19 L3-77 x K 8 12 13 3 5 2.6 0.19 12 30 48 33 14 3.1 0.09 L3-80 x K 1 3 10 8 5 3. 5 0.20 K x L3-77 4 2 1 3 2 2.8 0.46 K x L3-80 2 1 2 4 1 3.1 0.4 3 L3-77 x L3-80 Continued TABLE 31: Class 1 Very Pa rentage_______________ Coarse L3-93 x L I 31 L3-93 X L l - 8 0 2 3 Coarse Medium 5 Very Progeny Standard F i ne_________Mean___________________ Error F i ne 1** 16 8 5 2.6 0.17 4 9 26 33 18 3.6 0.11 7 13 9 5 3.3 0.18 3 2. 0 0.26 0.2if 1 LI-171 x L131 3 if LI 31 x 13-77 8 5 17 W.S. x L21 L9-39 x NC171 ^ l*t L8-3 x L l - 8 0 0K51 x L131 C o ntin u e d 17 1 2 8 8 if 2.8 10 7 1 2.1 5 13 2 1 5 1 3 1 . 0. 15 3.1 0.19 2.6 0.57 108 TABLE 32: P e rcen tag e o f Sweet P o ta t o S e e d lin g s o f Each Progeny in D i f f e r e n t C lasses Based on F i b e r Size Class 1 2 3 4 Parentage________Very Coarse Coarse_____ Medium________Fine 5 Very Fine L3-80 x L3-77 10.0 20.0 40.0 20 .0 10.0 L3-77 (X) 15-0 10.0 25.0 40.0 10.0 L3-77 x NC171 14.3 28 .6 28 .6 14.3 14.3 L3-80 (X) 30.8 23.1 23 -1 23.1 5.6 27.8 33-3 27.8 5.6 Kandee (X) 24.1 24.1 31.0 17.2 3.7 L3-77t x L i 31 16.7 25 .0 29.2 20.8 8.3 L3-77 x L l - 8 0 5.3 18.4 28.9 26.3 21.1 19.5 29.3 31 .7 7-3 12.2 L3-77 x L3-80 8.8 21.9 35 .0 24.1 10.2 L3-80 x K 3.7 11.1 37 .0 29 .6 18.5 K x L3-77 33.3 16.7 8.3 25 .0 16.7 K x L3-80 20.0 10.0 20 .0 40.0 10.0 L3-93 x L131 24 .6 24 .6 28.1 14.0 8.8 L3-93 x L l -8 0 4.4 10.0 28.9 36 .7 20.0 L8-3 x L l - 8 0 2.9 20.0 37.1 25.7 14.3 Ll-171 x L131 30.0 40.0 30 .0 L131 x L3-77 24 .2 15.2 24 .2 24 .2 12. 1 0K51 x L131 29.8 29.8 19.2 13.5 1.9 3.7 18.5 48.1 18.5 11.1 28.6 28 .6 14.3 14.3 14.3 L 3- 771 x NC171 L3-77 x K W.S. x L21 L9-39 x NCI71 109 the l a r g e s t pa re nt g r e a t l y exceeded the number smaller than th at o f the sm allest p a r e n t . C o r r e l a t i o n c o e f f i c i e n t s between f i b e r content and c e r t a i n o t h e r c h a r a c t e r i s t i c s are presented in Table 35. o f roots per p l a n t and percentage f i b e r The r value f o r the number (r = - . 179) i n d ic a t e d an inverse r e l a t i o n s h i p between the two chara ct er s but i t was o f such low or de r o f magnitude t h a t i t would be o f l i t t l e p r a c t i c a l between firmness and f i b e r content of a very low magnitude. The ne g at iv e na tu re o f the r e l a t i o n s h i p was i n di c at ed in cr easing s o f t The c o r r e l a t i o n values o f carotene and f i b e r content (r = - . 07*0 and o f dry m at ter and f i b e r content significant. (r = + .0 8 3 ) were not There was a s l i g h t a s s o c i a t i o n between c o r t e x thickness and f i b e r content (r = + . 0 9 3 ) but i t was too low to be o f The smoothness o f the r o o t , importance. t h a t is degree o f freedom from vei nin g and/ or c r a c k in g , and f i b e r content (r = - . 2 1 5 ) were i n v e r s e l y r e l a t e d , the rougher roots had a g r e a t e r f i b e r co n te n t. e arlie r, The a ss o ci at io n ( r - - . 099 ) was also negative and expected since increas ing values f o r firmness ness o f the r o o t s . valu e. thus As was pointed out the smoothness data were not recorded in a manner to show an as s o c i a ti o n o f smoothness w i t h f i b e r co n te n t. c o r r e l a t i o n between shape o f the ro ot f i b e r content There was a f a i r l y high (high length to wid th r a t i o ) and ( r = + .4 1 1 ) which in d ic a t e d t h a t the longer the root the g r e a t e r was the f i b e r co n te n t. There was a hi ghl y s i g n i f i c a n t c o r r e l a t i o n total f i b e r content and f i b e r s i z e . per cent o f the v a r i a t i o n This in d ic a t e d t h a t more than 40 in f i b e r content was due to the regression o f f i b e r s i z e on f i b e r c o n te n t. l in k e d . ( r = + . 638 ) between Thus the ch a ra ct er s were separate but F i b e r s i z e appeared to be c o n t r o l l e d by a small number of no TABLE 33: Frequency D i s t r i b u t i o n of Number of Sweet Potato Seedlings of Each Pro geny i n t o D i f f e r e n t Classes Based on the Baking Index 0-4 Poor 4.1-6.0 Medium 5 3 12 5.6 Kandee (X) 4 24 1 5.1 L3-80 5 6 2 5. 3 3 22 16 5. 5 28 86 60 5. 4 K x L3 -77 1 8 3 5. 5 K x L3 - 80 1 6 3 5.4 1 3 6 6.4 L3-80 x K 4 7 16 5.9 L3-77 x L131 3 12 9 5.6 Li 31 x L3-77 3 11 19 5.9 L3-77 x NC171 4 12 5 5.4 L3-77 x L l - 8 0 3 31 40 6.1 L3-93 x LT31 9 23 25 5.7 12 37 41 5.9 L8-3 x L l - 8 0 3 10 22 6.1 0K51 x LI 3 1 7 17 28 5-7 L I -171 x L I 31 1 1 8 6.5 W.S. x L21 9 15 3 4.4 L9-39 x NCI71 1 3 3 5. 7 L 3- 77 t x NC171 8 5 6 5. 0 Parentage L3-77 (X) (X) L3-77 x K L3-77 x L3-80 O 00 1 x L3-77 L3-93 x L l - 8 0 Baking Index Class 6.1-10 Good Progeny Mean 111 TABLE 34: Parentage Class Baking Index P e rcen tag e o f Sweet P o ta t o S e e d lin g s o f Each Progeny in D i f f e r e n t Classes Based on th e Baking Index Poor 0-4.0 Medium 4.1-6.0 Good 6.1-10 L3-77 (X) 25.0 15.0 60.0 Kandee (X) 13.8 82 . 8 3 -4 L3-80 (X) 38 .5 46 . 2 15.3 7.3 53-7 39 .0 16.1 49.4 34.5 K x L3-77 8.3 66.7 25 .0 K x L3-80 10.0 60.0 30. 0 L3-80 x L3-77 10.0 30.0 60.0 L3-80 x K 14.8 25 . 9 59.3 L3-77 x L 131 12.5 50. 0 37. 5 LI31 x L3-77 9.1 33.3 57 . 6 L3-77 x NC171 19.0 57,1 23.8 L3-77 x L l - 8 0 4.1 41.9 54.0 L3-93 x L 131 15.8 40.4 43.8 L3-93 x L [ - 8 o 13.3 41.1 45.6 8.6 28.6 62.8 0K5I x L 131 13.5 32 .7 53 . 8 LI -171 X LI 31 10.0 10.0 80.0 W.S. x L21 33 .3 ■ 55.6 11.1 L9-39 x NC171 14.3 42.9 42.9 L3-77 x K L3-77 x L3-80 L8-3 x L l - 8 0 112 genes, w it h p a r t i a l character dominance. F i b e r con ten t behaved as a q u a n t i t a t i v e i n v o l v i n g several genes, geometric in e f f e c t , s eg re ga tin g in a tr a n s g r e s s i v e manner. Inher i tance o f Baki nq 1ndex Data prese nte d in Ta b le 33 g i v e the frequency d i s t r i b u t i o n o f the sweet po t at o s ee dl in gs o f each progeny based on the baking index and the percentage o f s ee dl in gs in each cl ass is given in Table 34. Progeny means i n d i c a t e t h a t as a whole, most o f the see dling s were o f average or medium baking q u a l i t y . A much g r e a t e r percentage o f the see dl in gs f e l l in the good baking c l a s s i f i c a t i o n progeny mean u s u a l l y than in the poor c l a s s i f i c a t i o n . lay between the means o f the two paren ts and, most cases, n e a re r the p ar en t w ith the hi g h er mean. parental in Since most o f the l i n e s had been s e l e c t e d as having acc ept abl e baking q u a l i t y , t h i s skewing o f the data toward the more p r e f e r a b l e s i d e , sev era l The as was t r u e in c h a r a c t e r s , was to be expected. C o r r e l a t i o n c o e f f i c i e n t s between baking index and the va ri ous qua lity components were not c a l c u l a t e d . pected i f A cl os e a s s o c i a t i o n would be ex c o n s id e r a t i o n was given to the manner in which the baking i n dex was d e r i v e d . The data o f C o nst ant in such a con cl u si on . f l a v o r , moistness, (24) g iv e very good support to He showed very close c o r r e l a t i o n s between sweetness, and c o l o r , from r = +.8 35 to r = + . 9 5 4 . and the baking index w i t h r values ranging Thus the i n h e r i t a n c e o f baking q u a l i t y based on the i n h e r i t a n c e o f the var io us components t h a t ty in the baked r o o t s . 49 , 58, qua li t y . 72, 92) is influence q u a l i As shown in t h i s and o t h e r st u d ie s (24, 40, 44, these c h a r a c t e r s are i n h e r i t e d and i n f l u e n c e baking 113 TABLE 35: C o r r e l a t i o n C o e f f i c i e n t s between Some V a r i a b l e s in the F] Progenies o f the Twenty-one Parental Combinations Variables Number o f Roots and Shape ( L : W) R a t i o -.09 4* Number o f Roots and Smoothness .176** Number o f Roots and C a rot en e .082 n . s . Number o f Roots and Dry M a t t e r -.067 n.s. Number o f Roots and F i b e r C o n te n t -.1 7 9 ** Shape (L:W) R a t i o and Smoothness -.0 3 0 n.s. Shape (L:W) R a t i o and C o r t e x T h i c k n e s s -.1 3 8 ** Shape (L:W) R a t i o and F ir m nes s .023 n . s . Shape (L:W) R a t i o and F i b e r C o n t e n t .411** Smoothness and Cortex Thickness -.061 n .s . Smoothness and C ar ot en e .042 n . s . Smoothness and Dry M a t t e r .007 n . s . Smoothness and F i b e r C o n te n t -.2 1 5 ** C o r t e x T h i c k n e s s and C a ro te n e -.02 8 n.s. C o r t e x T h i c k n e s s and Dry M a t t e r .068 n . s . C o r t e x T h i c k n e s s and F ir m nes s -.13 6** C o r t e x T h i c k n e s s and F i b e r C o n te n t .093* C a ro te n e and Dry M a t t e r -.5 6 9 ** Ca rot en e and Moistness .601** Ca rot en e and Flavor .217*'* Ca ro t e n e and Color Ca rot en e and Firm nes s In te n s ity .941** .514** C o n ti n u e d m TABLE 35: C o n tin u e d V a ri a b l e s r Carotene and Fi ber Content c -3" o• 1 Dry M at t e r and Moistness -.57 2** Dry M a tt e r and Fl av or -.12 2** Dry M at te r and Firmness -.5 4 2 ** Dry M at te r and F ib er Content .084 n.; Moistness and Fla vor .401** Moistness and Firmness .692** . 676* * 10 F l a v o r and Sweetness l 00 Moistness and Sweetness Firmness and F i b e r Content . 099* F i b e r Content and F i b e r Size . 638* * * S i g n i f i c a n t a t 5 per ce n t level f o r 680 degrees of freedom. ** S i g n i f i c a n t a t 1 per ce n t level f o r 680 degrees of freedom, n.s. No s i g n i f i c a n t d i f f e r e n c e . SUMMARY AND CONCLUSIONS A study o f the i n h e r i t a n c e o f f i b e r , shape, c o r t e x thickness and baking q u a l i t y dry m a t t e r , carotene content, in sweet potat o roots was conducted. Twenty-one progenies obtained by se le ct ed combinations o f 14 p ar en ta l li n e s and c e r t a i n s e l f e d paren ts were grown a t the Sweet Potato Research Center, Chase, Lo u is ia na , harvested and tra ns po rt ed to M is s is s ip p i S t at e U n i v e r s i t y , for curing, s t o r in g and e v a l u a t i n g the f a c t or s st ud ie d. The p r o g e n i e s v a r i e d w i d e l y in p e r c e n ta g e o f t h e p l a n t s that pro duced s t o r a g e r o o t s and in th e keep ing q u a l i t y o f th e r o o t s . The l i n e L8-3 ( J u l i a n ) appeared t o be s u p e r i o r as a female in t hes e r e s p e c t s . Only 4 o f the 14 p ar en ta l re n t s. One l i n e , or female parent roo ts . li n e s were used as both male and female pa L3—77 ( C e n t e n n i a l ) , performed e q u a ll y well as a male in the a b i l i t y o f the seedlings to produce storage Progenies in v o l v in g Kandee or L3-80 as one o f the parents i n d i cated these two lin e s were b e t t e r as male parents than as female parents w hi le L 131 appeared to perform b e t t e r as a female p a r e n t. The pos sib le presence o f cytoplasmic f a c t o r was suggested by these data. An e v a l u a t i o n o f th e 21 p r o g e n i e s and 14 p a r e n t a l o f th e r o o t as de te r m in e d by t h e l e n g t h : w i d t h t h a t shape was a h e r i t a b l e c h a r a c t e r . n a t u r e w i t h an absence o f dominance. a d d itiv e e f fe c t. l i n e s f o r shape (L:W) r a t i o in dica ted S e g r e g a t i o n was t r a n s g r e s s i v e in The genes appeared t o have an The d a t a i n d i c a t e d t h a t t h e s e l e c t i o n o f h i g h y i e l d i n g p la n ts , plants w ith l a r g e numbers o f e n l a r g e d r o o t s , 115 and p l a n t s t h a t 116 produced w e l l shaped r o o t s was p o s s i b l e w i t h o u t i n t e r a c t i o n o f t h e two characters. The p r o g e n ie s were e v a l u a t e d f o r s u r f a c e smoothness o f th e r o o t s as an e s t i m a t e o f freed om from v e i n i n g and c r a c k i n g . A l a r g e p e r c e n ta g e o f th e s e e d l i n g s o f some p r o g e n i e s had r o o t s w i t h smooth s u r f a c e s . fo rtu n a te ly, the d a t a do not d i s t i n g u i s h between the presence o f v e i n s a n d / o r c r a c k s as causes f o r r a n k i n g th e r o o t s p o s s i b l e cause f o r c r a c k i n g and i t s in a p a r t i c u l a r c l a s s . l o c a t e d between th e The r e s u l t s o f t h i s study t e x t h i c k n e s s was an i n h e r i t e d c h a r a c t e r . p r o g e n i e s s e g r e g a te d i n a t y p i c a l A e f f e c t on smoothness was d i s c u s s e d . The c o r t e x was c o n s i d e r e d as th ose t i s s u e s e p i d e r m i s and e n d od er m is . Un in d ic a te d th a t cor The s e e d l i n g s t r a n s g r e s s i v e manner. in th e v a r i o u s R e la tive t h ic k ness o f t h e c o r t e x appears t o be c o n t r o l l e d by r e l a t i v e l y few genes w i t h s im p l e a d d i t i v e e f f e c t s . In th e i n h e r i t a n c e o f dr y m a t t e r , g re ssive segregation occurred. t h e data i n d i c a t e d t h a t t r a n s - In each progeny t h e r e were s e e d l i n g s w i t h a dr y m a t t e r c o n t e n t h i g h e r than t h a t o f the h i g h e s t p a r e n t and some t h a t were lo we r th an t h a t o f t h e l o w e s t p a r e n t . In most p r o g e n i e s , t h e progeny mean was low er th an t h e mean o f th e two p a r e n t s p a r t i c u l a r l y when both p a r e n t s were r e l a t i v e l y t h a t dry m atter in d r y m a t t e r . I t was c on c lu de d i s a q u a n t i t a t i v e c h a r a c t e r c o n t r o l l e d by s e v e r a l l a c k i n g dominance b u t a d d i t i v e manner. high in e f f e c t , genes, segregating in a tra n s g re s s iv e Dry m a t t e r was shown t o be p o s i t i v e l y c o r r e l a t e d w i t h m o i s t ness , f i r m n e s s and f l a v o r . In most p r o g e n i e s t h e mean c a r o t e n e c o n t e n t f e l l parents, between t h e two u s u a l l y c l o s e l y a p p ro a c h in g th e mean o f t h e p a r e n t s combined. Carotene c o n t e n t was a q u a n t i t a t i v e c h a r a c t e r t h a t s e g r e g a te d 117 transgressively. The data i n d i c a t e t h a t several suggested by Hernandez ( 4 9 ) , were a d d i t i v e in e f f e c t , genes, po s si b ly 6 as c o n t r o l l e d carotene content. lac ki ng dominance. The genes An e p i s t a t i c e f f e c t o f the genes f o r wh ite co lo r over those f o r orange c o l o r or the presence o f an i n h i b i t o r gene was suggested. Carotene content was shown to be nega t i v e l y c o r r e l a t e d w ith dry m at ter and firmness but p o s i t i v e l y c o r r e l a t e d wit h f l a v o r and moistness in the baked roots. In g e n e r a l, segregation f o r skin co lo r wast r a n s g r e s s iv e . In a l l progenies there were i n d i v i d u a l s l i g h t e r and darker in skin color than e i t h e r p a r en t. male p a r e n t , I f the female pa re nt had a l i g h t e r skin c o l o r than the the g r e a t e r p a r t o f the seedlings in a progeny possessed roots w it h a l i g h t skin c o l o r . co lo r than the male, I f the female paren t had a darker skin the g r e a t e r p a r t o f the seedlings in a progeny possessed roots with a dark skin c o l o r . The darker the skin color o f the parents the darker was the skin co lo r o f the roots o f the seedlings in a progeny. were a d d i t i v e The data in d ic a t e d several in e f f e c t , genes were in vo lv ed . some were complementary and Some o t h e r were i n h i b i - t i ve. The roots o f each seedling of each progeny were r at ed f o r baking q u a lity . The q u a l i t y o f the baked f l e s h o f sweet potato roots is i n flue nced by carotene content (or c o l o r ) , f ir m n es s , dry mat ter and f i b e r co n te n t. sweetness, f l a v o r , moistness, Thus the i n h e r i t a n c e o f q u a l i t y in the sweet potat o is complex. Color intensity in the baked roots was shown to be c l o s e l y c o r r e l a ted to the carotene content o f the raw ro ot s. Un if o r m it y o f the c o l o r appeared to be c o n t r o l l e d by a r e l a t i v e l y small number o f genes t h a t were a d d i t i v e in e f f e c t w ith a t le a s t p a r t i a l dominance. 118 The d a t a i n d i c a t e d m o is t n e s s c h a r a c t e r c o n t r o l l e d by s e v e r a l i n the baked r o o t s was a q u a n t i t a t i v e genes s e g r e g a t i n g t r a n s g r e s s i v e l y . Dominance was n o t e v i d e n t ; an a d d i t i v e e f f e c t was s ugg est ed . M o is tn es s was shown t o be p o s i t i v e l y c o r r e l a t e d w i t h c a r o t e n e and f l a v o r b u t ne g a t i v e l y c o r r e l a t e d w i t h d r y m a t t e r and f i r m n e s s . The f l a v o r data i n d i c a t e d t h a t the c o m b i n a t i o n o f c h a r a c t e r s nec essary f o r a good o r s u p e r i o r f l a v o r was a r e c e s s i v e t r a i t . fe w i n d i v i d u a l s Very i n any progeny possessed a f l a v o r o f sweetness s u p e r i o r t o t h e b e t t e r p a r e n t b u t many were i n f e r i o r t o t h e poo r p a r e n t . was shown t o be c o r r e l a t e d w i t h c a r o t e n e , m o i s t n e s s , There was a n e g a t i v e a s s o c i a t i o n w i t h dry m a t t e r . Flavor and sweetness. The i n h e r i t a n c e o f th e genes c o n t r o l l i n g f l a v o r and sweetness was r e c e s s i v e and an a s s o c i a t i o n w i t h one o r more enzyme systems as c o n v e r s i o n f a c t o r s d u r i n g ba ki ng was sugg este d. F ir m n e s s , c a r o t e n e , d r y m a t t e r and m o is t n e s s c h a r a c t e r s appeared t o be q u a n t i t a t i v e and c o n t r o l l e d by s e v e r a l gre ssive ly. genes s e g r e g a t i n g t r a n s - The h ig h degree o f c o r r e l a t i o n between some o f t h es e c h a r a c t e r s suggested l i n k a g e as a f a c t o r . V ariations in f i b e r c o n t e n t o f th e s e e d l i n g s o c c u r r e d w i t h i n each i n d i v i d u a l progeny b u t progeny means were s i m i l a r . appeared t o be i n v o l v e d — one f o r c o n t r o llin g f ib e r size . f i b e r size w h ile t o t a l Two s e t s o f genes t h e pr es en ce o f f i b e r and a n o t h e r A few genes w i t h s i m p l e dominance c o n t r o l l e d f i b e r c o n t e n t was c o n t r o l l e d by s e v e r a l g e o m e t r i c in e f f e c t and l i n k e d w i t h t h e genes f o r f i b e r br e e d e r s ho u ld e n c o u n t e r no m aj or problems size . genes, The p l a n t in s e le c tin g seed lings w ith a low f i b e r c o n t e n t . The i n h e r i t a n c e o f b a k in g q u a l i t y i s based on t h e i n h e r i t a n c e o f 119 the various components a f f e c t i n g q u a l i t y both i n d i v i d u a l l y and collect iv e ly . Although environment, p a r t i c u l a r l y p o s t - h a r v e s t han dling, was known to in flu en ce the q u a l i t y of the baked roots, t h a t baking q u a l i t y is a h e r i t a b l e t r a i t . by a complex of g e n e ti c c h a ra c t e r s , moistness, dry m a t t e r , Baking q u a l i t y was c o n t r o l l e d i nc lu din g c o l o r , firmness, and f i b e r , a l l t i v e and segregated t r a n s g r e s s i v e l y . t h i s study has shown sweetness, f l a v o r , o f which were q u a n t i t a BIBLIOGRAPHY 1. A1 i , Mohammed Kasem. 1958. The e f f e c t of v a r i e t y , length of s t o rage, and the baking process on the carbohydrate content and t a b l e q u a l i t y of sweet potatoes. Ph.D. D i s s e r t a t i o n , La. S t at e Univ. 141 p. 2. Anderson, W. S. 1937. The of Triumph sweet potatoes S c i . 35: 70 9- 7 12 . 3. 4. 5. in fluence o f potash on grade and shape in M i s s i s s i p p i . Proc. Amer. Soc. Ho rt. 1938. The in fluence of n itr og en on grade and shape of Triumph sweet potatoes in M i s s i s s i p p i . Proc. Amer. Soc. Hort. S c i . 3 6 : 605- 6 0 8 . _______ , and J. W. Randolph. 1943. Sweet pot ato production; time o f p l a n t i n g and h i l l spacing s t u d i e s . Miss. A g r i c . Exp, S t a . Bui. No. 378. 22 p. . and F e r t i l i z a t i o n and h i l l Bui. No. 402. 22 p. . 1944. Sweet pot ato production; spacing s t u d i e s . Miss. A g r i c . Exp. St a . 6. ___________ , H. L. Cochran, J. B. Edmond, 0. B. G ar ri so n , R. E. W r ig h t , and V. R. Boswell. 1945. Regional^studies of time of p l a n t i n g and h i l l spacing of sweet pot ato es. U. S. Dept. A g r i c . C i r c . No. 725. 7. Angel 1, F. F . , and I , G. Hi 1 I y e r . 1962. C u l t u r a l and en vi ro nm en t a l c o n d i t i o n s a f f e c t i n g r a d i s h (Raphanus s a t i v u s L . ) r o o t - h y p o c o t y l dev elopmen t. P r o c . Amer. Soc. H o r t . S c i . 81 :4 0 2 -4 0 7 . 8. Anonymous. 1955. Genetics and cytology o f cot to n. Series Bui. No. 47. 67 p. 9. Anonymous. 1964. Population trends. Americana Co rp ., N. Y. pp 535-537- South. Coop. The Americana Annual. 10. Audus, L. J. 1963. Pu bl i s h e r s , I n c . , P la n t Growth Substances. In te rs c ie n c e N. Y. pp 1-155 and 361-414. 11. B a r r i o s , Ea rl P . , D. W. Newsom, and J. C. M i l l e r . 19 6 1 . Some anatomical chara ct er s associated with the c u l i n a r y q u a l i t y o f I r i s h p ot at oe s. Proc. Amer. Soc. H o rt . Sc i. 78: 41 3- 4 20 . 12. Baumgardner, R. A . , and L, E. S c o t t . 1963The r e l a t i o n o f pect i c substances to firmness o f processed sweet po t a t o e s . Proc. Amer. Soc. H o r t . Sci. 83 :6 2 9 -6 4 0 . 120 121 13. B e a t t i e , J. H. 1922. A summary o f twenty years work w it h sweet po ta to es. Proc. Amer. Soc. H o rt . Sc i. 19:96 -97 . 14. B la ck hu rs t, H. T . , and D. R, Pa tte rs on , 1958. Infl uen ce o f v a r i e t y , f e r t i l i z e r s and i r r i g a t i o n on southern peas (Viqna s i n e n s i s ) in Texas. Proc. Assoc. Sou. A g r i c . Workers 55:14-5. ! 15. B l e s s t n , C. W . , J. D. B r e c h e r , R. J. D i m l e r , C. 0. Grogan, and C. M. Campbell. 1963Carotenoids of corn and sorghum I I I . V a r i a t i o n in xanth op hyl ls and carotenes in h y b ri d , inbred and e x o t i c corn l i n e s . Cereal Chem. 4 0 ( 4 ) : 4 3 6 - 4 4 2 . 16. Boswell, V. R . , M. T. Deonier, R. L. Carolus, J. B. Edmond, 0 . B. G ar ris on , H. L. Cochran, O tis Woodward, W. S. Anderson, J. C. M i l l e r , and R. E. Wrig ht . 1944. Place and season e f f e c t s on y i e l d s and starch content o f 38 kinds o f sw eetpotatoes. U. S. Dept. A g r i c . C i r . No. 714. 15 p. 17- Brown, Ralph T. 1938. Comparative methods and techniques in the production o f seed and seed ling sweet p o t a t o . M. S. Thesis. La. S t at e Univ. 41 p. 18. Burton, David Lee, 1957. The q u a l i t y o f sweet potat o chips ias influ en c ed by v a r i e t y , method o f p r e p a r a ti o n and storage condi t io n s o f the roots. Ph.D. D i s s e r t a t i o n . La. S t at e Univ. 177 p. 19. Campbell, G. M. 1957. The e f f e c t s o f s o i l mulches upon the tempe r a t u r e o f the s oi l and upon the growth, y e i l d , grade and col or of the sweetpotato. M. S. Thesis. Miss. S t a t e U n i v . , St ate Col lege, Miss. 24 p. 20. C a r l t o n , B. C . , and C. E. Peterson. 1963. Breeding c a r r o t s f o r sugar and dry matter c o n te n t. Proc. Amer. Soc. H o rt . Sc i. 8 2 : 3 3 2 -3 4 0 . 21. Carolus, R. L. 1932. The e f f e c t o f f e r t i l i z e r treatment on the shape o f Po rto Rico sweet pot ato es. Proc. Amer. Soc. H o rt . Sci. 2 9 :4 2 5- 4 28 . 22. Chapman, H. W. 1958. T u b e r i z a t i o n in the po ta to p l a n t . Plana tariu m 11:215-224. 23. Chipman, E. W. 1959The i n flu en c e o f length of growing season on root type of c a r r o t v a r i e t i e s . Proc. Amer. Soc. H o rt . Sc i. 7 4 : 5 8 3 -5 8 6 . 24. Co ns ta nt in , R. J. 1964. A study o f the i n h e r i t a n c e o f several ch a ra ct er s in the sweet potato (Ipomoea b a t a t a s ) . Ph. D. Dissertation. La. S t a t e U n i v . , Baton Rouge, La. 82 p. 25. Cooley, J. S. 1951O r i g i n o f the sweet p o t a t o and p r i m i t i v e storage methods. S c i. Monthly 72: 32 5- 3 31 . Ph ysi ol. 122 26. Covington, Henry M. 1941. Some f a c t o r s a f f e c t i n g the carotene content o f sweet potatoes. M. S. The sis . La. St at e Univ. 34 p. 27. D a v is , R. M . , J r . , G. A. Baker, and R. F. Kasmire. 1964. Muskmelon q u a l i t y c h a r a c t e r i s t i c s - T h e i r v a r i a b i l i t y and i n t e r r e l a ti o n s h i p s . H i l g a r d i a 35 ( 1 6) : 479-489 • 28. Dawson, E. H ., J. L. Brogdon, and S. McManus. 1963. Sensory t e s t ing o f d i f f e r e n c e s in t a s t e . Food Technology 1 7 ( 9 ) : 4 5 - 5 1. 29. 30. 31- ,__ ____ , and of d i f f e r e n c e s in t a s t e . I I Technology 1 7 ( 1 0 ): 3 9 - ^ 3 - 1963. Sensory t e s t i n g - S e le c ti o n o f panel members. Food Edmond, J. B, 1934. The i n flu en c e o f p l a n t i n g date on the shape o f the Nancy H a l l sweet p o t a t o . Proc . Amer. Soc. H o r t . S c i . 32: 50 2- 5 03 . , 0. B. G a r r i s o n , R. E. W r i g h t , 0. Woodward, C. E. S t e i n bauer, and M. T. Deonier. 1950. Cooperative stu die s on the e f f e c t s o f height o f r id g e, ni tro ge n supply and time o f harvest on y i e l d and f l e s h co lo r o f the Porto Rico sweetpotato. U. S. Dept. A g ri c. C i r . No. 832. 40 p. 32. E z e l l , B. D ., and M. S. Wilcox. 1946. The r a t i o o f carotene to caroteno id pigments in sweet potat o v a r i e t i e s . S c i. 103:193-194. 33- Fong, L i l y Wen-yuen. 1951. The e f f e c t o f date o f p l a n t i n g and ha rve st in g on the n u t r i t i v e value and q u a l i t y o f sweet potatoes. M. S. Thesis. La. St ate Univ. 38 p. 34. Gaa fa r, Abdel-Rahman Kotb. 1957. Factors a f f e c t i n g carotene and sugar formation in sweet pota toe s. Ph.D. D i s s e r t a t i o n . La. St at e Univ. 93 p. 35- Goodson, Charles Leon, 1949* A study o f sweet po ta to seedlings wit h ref ere nce to dry matter and ca ro te ne . M. S. Thesis. La. St at e Uni v. 17 p . 36. Goodwin, T. W. 1955. Carotenoids. Modern Methods o f P la n t Analys i s . Ed ite d by K. Paech and M. V. Tracey. Springer V e rl ag . B e r l i n . Vo l. I l l pp 272-311. 37. Green, John M. land cot to n. 38. Grogan, C. 0 . , C. W. Bl ess in, R. J. Di m le r, and C. M. Campbell. 1963. Parental i n flu en c e on xa n tho phy lls and carotenes in corn. Crop S c i . 3 : 2 1 3 -2 1 4 . 1950. V a r i a t i o n inthe p r o p e r t i e s o f Agron. Jour. 4 2 : 3 3 8 -3 4 1 . l i n e o f up 123 39. H a l l , C. B. 1964. Firmness and c o l o r of some tomato v a r i e t i e s during ri p e n i n g and according to harvest dates . Proc. Amer. Soc. Hort. Sc i. 8 4 :5 0 7- 5 12 . 40. Hammett, H. L . , and B. F. B a r r e n t i n e . 19 6 1. Some e f f e c t s of v a r i e t y , cur in g and baking upon the carbohydrate content of sweet pot atoes. Proc. Amer. Soc. H o rt . S c i . 78: 42 1-4 26. 41. . 1962. Some e f f e c t s o f area of production on q u a l i t y of processed sweet potatoes. Proc. Assoc. Sou. A g r i c . Workers 59: 19 2. 42. Harmon, S. A. 1962. The e f f e c t i v e n e s s of h i l l s e l e c t i o n f o r lower f i b e r content in Georgia Red sweet potatoes. Proc. Assoc. Sou. A g r i c . Workers, 5 9 : 1 89-1 9 0 . 43. Ha sse lb rin g, H . , and L. A. Hawkins. in sweet potatoes during sto ra ge. 44. 45. 1915.' Ph ys io lo g ic a l changes Jour. A g r i c . Res. 3:331 -3^+2. 1915Carbohydrate t ra nsf or ma tio ns ,and_____ __ . in sweet pot atoes. Jour. A g r i c . Res. 5 : 5 4 3 -5 6 0 . Hayes, H. K ., F. R. Immer, and D. C. Smith. Pl ant Breeding, 2nd. ed. McGraw-Hill Book 551 pp. 1955. Methods of Co., I n c . , N. Y. 46. Hayward, H. E. 1938. The S t r u c t u r e o f Economic P l a n t s . MacMillan Co., N. Y. pp 485-513- 47. He ber t, Leo Pl a c i d e . 1956, Breeding behavior of c e r t a i n agrono mic ch a ra ct er s in progenies of sugar cane crosses. Ph.D. Dissertation. La. S t a t e Univ. 1—107- 48. Hernandez, Teme Paul. of the sweet p o ta to . The 1942. A study of some gen et ic ch ar ac te rs M. S. Thesis. La. S t a t e Un iv. 1-33. 49. Hernandez, T r a v i s P. 19&3- A study o f the i n h e r i ta n c e of skin c o l o r , t o t a l ca ro te no id pigments, dry m at te r and techniques in c l a s s i f y i n g these ch ar ac te rs in 1pomoea b a t a t a s . Ph.D. Dissertation. La. S t at e U n i v . , Baton Rouge, La. 1-91. 50. Hines, Chesley. 1949. E f f e c t o f l o c a t io n On y i e l d , grade and q u a l i t y of the U n i t I Porto Rico sweet p o t a t o . M. S. The sis . La. S t a t e U n i v . , Baton Rouge, La. 1-32. 51. House, H. D. 1908. North American species Ann. N. Y. Acad. S c i . 18:181-263. o f the genus 1pomoea. 52. Janes, Byron E. 1944. The r e l a t i v e e f f e c t o f v a r i e t y and e n v i r o n ment in det ermining the v a r i a t i o n s o f per cent dry w ei g h t, as co r b i c a c i d , and carotene content of cabbage and beans. Proc. Amer. Soc. H o rt . S c i. 45 : 3 8 7 ” 390. 124 53. Jasmin, J. J . , H. B. Heeney, and R. Tourchot. 1964. Potassium and phosphorous accumulation in organic s o i l s and t h e i r in flu en ce on potat o crops. Canad. Jour. So il Sci. 4 4 ( 3 ) : 2 8 0 - 2 8 5 . 54. Jenkins, J. M., J r . 1954. Some e f f e c t s of d i f f e r e n t day lengths and temperatures upon bulb f or ma tio n in s h a l l o t s . Proc. Amer. Soc. Hort. S c i. 64: 31 1- 3 14 . 55- Jenkins, W. F . , and E. L. Moore. 1954. The d i s t r i b u t i o n of asc or bi c ac id and l a t e x vessels in three t is s u e regions of sweet potatoes. Proc. Amer. Soc. Hort. S c i . 63 :3 8 9 -3 9 2 . 56. ___________ , W. S. Anderson, and W. W. Watson. 1956. Geographi cal l o c a t i o n and storage a f f e c t i n g carbohydrates and canning q u a l i t y in sweet pot atoes. Proc. Amer. Soc. Hort. S c i . 6 8 : 4 0 6 411. 57- ___________ , and M. G ie g e r . 1957. ra tu re s a f f e c t i n g carbohydrates Soc. H o r t . S c i . 7 0 :4 1 9- 4 24 . 58. C u r i n g , b a k i n g t im e and tempe in sweet p o t a t o e s . Proc. Amer. , and _____. 1957. Q u a l i t y in baked sweet pota toes a f f e c t e d by v a r i e t i e s and p o s t - h a r v e s t tre atme nts . Food Research 22(No. 1 ) : 3 2 - 3 6 . 59. ___________ . 1957. V a r i e t i a l d e s i r a b i l i t y and n u t r i t i v e value o f southern peas before and a f t e r f r e e z i n g and cooking, Proc. Amer. Soc. Hort . S c i. 6 9 :4 0 8 -4 1 1 . 60. Kimbrough, W. D . , E, A. F i e g e r , and H. Lewis, 1946. Effect of date o f p l a n t i n g and time of harve st on the carotene content o f sweet potatoes of the Porto Rico v a r i e t y . Proc. Amer. Soc. H o rt . S c i. 47 :4 0 0 -4 0 2 . 61. King, J, R , , and R. Bamford. 1pomoea and r e l a t e d genera. 1937. The chromosome Jour. Hered. 28:279. number in 62. Kramer, A . , I. C. Haut, L. E. S c o t t , and L. E. Ide. 1949O b je c ti v e methods f o r measuring q u a l i t y f a c t o r s of raw, canned and fr o ze n asparagus. Proc. Amer. Soc. H o rt . S c i . 53:4 1 1- 4 25 . 63. ______ . 1963. Revised t a bl es f o r determining s i g n i f i c a n c e of d iffe re n ce s. Food T ec hn ol ogy 17 { 1 2 ) : 1 2 4 - 1 2 5 . 64. Leopold, A. C. 1964. Pl ant Growth and Development. H i l l Book Co ., N. Y, pp 31-176 and 296-303. McGraw- 65. Lew is, C. F. G e n e t i c r e c o m b i n a t i o n s in a h y b r i d i n v o l v 1951. ing t hr ee species of Gossypium. Ph.D. D i s s e r t a t i o n . Univ. o f C a l i f . (Ab st ra ct o nl y. O r i g i n a l not see n.) 66. Luh, B, S . , S. J. Leonard, and D. S. P a t e l . i 9 6 0 .Pink d i s c o l o r a t i o n in canned B a r t l e t t pe a rs . Food Tec hn olo gy 1 4 ( 1 ) : 5 3 —56. 125 57- Massey, P. H . , J r . , James F. Eh e a r t, R. W. Young, and H. M. Camper. 1957* The e f f e c t s o f v a r i e t y on the y i e l d and vi ta m in content o f sweet po ta to es . Proc. Amer. Soc. H o rt . S c i. 6 9 : 4 3 1 -4 3 5 . 68. M i k e l l , J. J . , Teme P. Hernandez, and J. C. M i l l e r . 1955Pre l i m i n a r y st u d ie s on the i n h e r i t a n c e o f skin and f l e s h c o l o r o f the sweet p o t a t o . Proc. Assoc. Sou. A g r i c . Workers 5 2 : 1 1 3 - 1 1 4 . 69. M i l l e r , J. C . , and W. D. Kimbrough, 1933. p l a n t i n g on the shape o f Porto Rico sweet Soc. H o rt . S c i . 3 0 : 5 4 1 - 5 4 4 . 70. seed. The e f f e c t o f date o f p ot at oe s. Proc. Amer. . 1937. Inducing the sweet potat o to bloom and set Jour. Hered. 2 8 : 3 4 7 -3 4 9 . 71. . 1939F u r t h e r stu di es and technics in sweet potat o breeding in L o u is ia na . Jour. Hered. 30 :4 8 5 -4 9 2 . 72. , and H. M. Covington. 1942. Some o f the f a c t o r s a f f e c t i n g the carotene o f sweet po ta to es. Proc. Amer. Soc. H ort. S c i . 40:519-522. 73. , Teme P..He rna nd ez, T r a v i s P. . Hernandez, J„ .R . B a rr y , J r . , W. A. Young, and W. J. M a r t i n . 1964. J u li an a new sweet potato v a r i e t y . La. A g r i c . Exp. Sta. C i r c . No. 79. 74. M o r r i s , L. L . , and L. K. Mann. 1955. Wound h e a l i n g , keeping qua l i t y and compositional changes duri ng curing and storage of sweet p o t a t o e s . H ilgardia 24(7):143-183. 75- Murata, T . , T. Sugiyama, and T. Akazawa. 1964. Enzymic mechanism o f st a r c h syn the sis in r ip e n i n g r i c e g r a i n s . Arch. Biochem. and Biophy. 10 7: 92 -1 01. 76. Nassar, Sayed H. 1964, A study o f i n h e r i t a n c e o f f r u i t crack r e s i s t a n c e in tomato, L. Esculentum. Ph.D. D i s s e r t a t i o n . La. S t a t e U n i v . , Baton Rouge, La. I l l p. 77. Newsom, D. W. 1959. Comparative f i b e r content o f roots of some sweet po ta to v a r i e t i e s and s e e d li n g s . Proc. Assoc. Sou. A g r i c . Workers 5 6 :157- 78. Nusbaum, C. J. 1949Ni tro ge n a f f e c t s sweet po ta to response to boron. V i c t o r y Farm Forum. No. 3 5 : 6 - 7 . 79- Pa terson, D. R . , W. H. Thames, J r . , and D. E. Speights. 1963. Some e f f e c t s o f crop r o t a t i o n , s o i l f u m ig a t i o n , v a r i e t y and n i t r o g e n on the y i e l d o f sweet po t a t o e s . Proc. Assoc. Sou. A g r i c . Workers 6 0 : 2 2 2 - 2 2 4 . 80. , and D. E. Sp eig hts . 1964. In fl u e n c e o f crop r o t a t i o n , f e r t i l i z e r and v a r i e t y on y i e l d s and crac kin g o f sweet po t at o roots. Proc. Amer. Soc. H o r t . S c i. 8 4 : 4 3 1 - 4 3 5 . 126 81. P e t r i , P. Scaramella, 1963. morphology o f the p o t a t o . The i n fl u e n c e o f temperature on the European Potato Journal 6 ( 4 ) : 2 4 2 - 2 5 7 • 82. Pl ai st ei d , Robert L . , and L. C. Pe terson. 1963. Two cycles o f phenotypic r e c u r r e n t s e l e c t i o n f o r high s p e c i f i c g r a v i t y . Amer, Potato Journal 40 ( 1 1): 396-402 83. P i nt hu s, Moshe J. 1964. Comparison o f some q u a l i t y c ha ra ct er s in North Dakota and I s r a e l durum wheat v a r i e t i e s . Crop Sc i. 4(4):439-440. 84. Poole, C. F. 1955.,. Sweet p o t a t o g e n e t i c s t u d i e s . Hawaii A g r i c . Exp. St a . Tech. Bui. No. 27. 19 p. 85. Reddy, 8ommareddy Ranga. 1952. E f f e c t o f f e r t i l i z e r s , s o i l type and environment on the y i e l d , carot ene and dry m a t t e r content o f the U n i t I Porto Rico sweet p o t a t o . M. S. T h e s is . La. S t a t e Un iv. 57 p- 86. Richmond, T. R. 1949. The ge n et ic s o f c e r t a i n f a c t o r s respo nsi b l e f o r l i n t q u a l i t y in American upland c o t t o n . Texas A g r i c . Exp. St a. Bui. No. 716. 36 p. 87. Robbins, W. R . , G. T. N i g h t i n g a l e , L. G. Schermerhorn, and M. A. Blake. 1929. Potassium in. r e l a t i o n to the shape o f the sweet potato. S c i. 7 0 ( 1 8 2 3 ) : 5 5 8 . 88. Ruf, R. H . , J r . 1964. Shape d e f e c t s o f Russet Burbank potato tubers as in fl u e n c e d by s o i l m o i s tu re , temperature and f e r t i l i t y level. Proc. Amer. Soc. H o r t . S c i. 8 5 : 4 4 1 - 4 4 5 . 89. Samuels, G , , and P. Landrau, J r . 1952. The i n f l u e n c e o f fe rtili zers on the carotene content o f sweet p o t a t o e s . Agron. Jour. 44(7):348-352. 90. S a th e r , Lois A . , and Ly le D. C a l v i n . I9 60 . The e f f e c t o f number o f judgements in a t e s t on f l a v o r e v a lu a ti o n s f o r p r e f e r e n c e . Food Technology 1 4 ( 1 2 ) : 6 1 3 - 6 1 5 . 91. Sc hm itt, H. P . , H. K. W i l d e r , and A. Kramer. 1954. A mandatory standard program on q u a l i t y f a c t o r s f o r f r o z e n asparagus and peas - an ind us tr y approach. Food Technology 8 : 4 6 2 - 4 7 0 . 92. S c o t t , L. E . , and W. A. Matthews. 1957. Carbohydrate changes in sweet potatoes during cur in g and st or ag e, Proc. Amer. Soc. H o r t . S c i . 7 0 :4 0 7 -4 1 8 . 93- S e l f , F. W . , and M. T. Henderson. 1954. Inheritance of f ib e r s t r e n g t h in a cross between the upland cot to n v a r i e t i e s AHA50 and H a l f and H a l f . Agron. Jour. 4 6 : 1 5 1 - 1 5 4 . 127 94. Singh, Hridaya Nath. 1956. Breeding behavior o f f i b e r cane. Ph.D. D i s s e r t a t i o n . La. S t a t e Univ. 55 p. in sugar 95. S i s t r u n k , W. A . , J. C. M i l l e r , and L. G. Jones. 1954. Carbohy d r at e changes during storage and cooking o f sweet po ta to es. Food Technology 8 : 2 2 3 - 2 2 6 . 96. ___________ , W. A. F r a z i e r , V. A. Clarkson, and R. F. Cain. 1960. E f f e c t o f i r r i g a t i o n , mulch and time o f harvest on c e r t a i n chemical and physical changes in f r e s h and processed green beans. Proc. Amer. Soc. H o r t . S c i. 76: 38 9- 3 96 . 97. Skoog, Folke , and C. 0. M i l l e r . 1957. Chemical r e g u l a t i o n o f growth and organ fo rmation in p l a n t tis s u e s c u l t u r e d in v i t r o . Soc. Exp. B i o l . Symposi a No. X I . The B i o l o g i c a l Action of Growth Substances. Academic Press. N. Y. pp 118-131. 98. Sloan, L. W. 1955. A g e n e ti c study o f f i b e r length in American upland c ot t on . M. S. The sis . La. S t a t e Univ. 38 p. 99. Smith, G. M ., E. M. G i l b e r t , R. I . Evans, B. M. Duggar, G. S. Bryan, and C. E, A l l e n . 1946. A Textbook o f General Botany, 4 t h . Ed. The MacMillan Co., N. Y . pp 4 1 - 61 , 150-155 and 498-501. 100. S t a f f o r d , T. J. 1953. I n h e r i ta n c e o f stren gth and p er im ete r o f f i b e r in a cross between two v a r i e t i e s o f American upland c ot t on . Ph.D. D i s s e r t a t i o n . La. S t a t e Univ. 74 p . . 101. Stevenson, F. J . , and R. V. Akeley. 1964. The po ta to : Its g e n et ic and environmental v a r i a b i l i t y . Amer. Potato Jour. 41(2):46-53 102. Stokes, I . E. 1934. A b i o m e t ri c a l a n a ly s is o f c e r t a i n ch a ra ct er s o f Saccharum o f f i c i n a r i u r n . M. S. T h e si s . Texas S t at e C o ll e g e . 34 p. 103. Thompson, H. C . , and W. C . . K e l l y . 1957. Vegetable Crops, 5 t h . Ed ., McGraw-Hill Book Co., Inc. N. Y. pp 405 -43 0. 104. Ti n g , Yu Chen, and A. E. Kehr. 1953sweet p o t a t o . Jour. Hered. 4 4 : 5 . 105. 106. M e i o t i c studies o f the , ,andJ. C. M i l l e r . 1957. A cytological study o f the sweet po t at o p l a n t Ipomoea batat as ( L . ) Lam. and i t s r e l a t e d species. Am. Nat. XCI, No. 85 8 :1 97 -2 03 . T o u ti n e , M. G. 1935. Breeding and s e l e c t i n g sweet pot ato es. Res. I n s t , o f Sub T r o p i c a l C u lt u r e s . Sukhum, U . S . S . R . Jour. Hered. 2 6 : 1 - 1 0 . 128 107. Wang, Shwen-ih, I9 60 , study. M. S. T h e s i s . Varianc e o f cane La. S t a t e U n iv . 65 108. Webb, Raymond E l l i s . 1948. S t u d i e s o f t o t a l s o l u b l e s o l i d s and sugar content in sweet p o t a t o e s . I - V a r i e t a l , s ee d lin g and storage pe r io d differences. II - The use o f the r e f r a c t o m e t e r . M. S. T h e s is . La. S t a t e Univ. 25 p. 109. Went, F. W. 1959. E f f e c t s o f environment o f paren t and grand p ar en t on tuber prod uc tio n by p o t a t o e s . Amer. Jour. Bot. 46:277-282. 110. W i l e y , R. C . , and A. H. Thompson. I960. Influence o f v a r ie t y , storage and m a t u r i t y on the q u a l i t y o f canned apple s l i c e s . Proc. Amer. Soc. H o r t . S c i . 7 5 : 6 1 - 8 4 . 111. W o l fo r d , E. R . , J. A. S a c k ! in , and C. D. Schwartze. 1961. E v a lu a ti o n o f new st ra wb er ry v a r i e t i e s f o r f r e e z i n g and p r e serving. Food Technology 15:152—155. 112. W i l l i a m s , V i r g i n i a R . , W e i - t i n g Wu, Hsiu Y. T s a i , and Harold G. Bates. 1958. V a r i e t i a l d i f f e r e n c e s in Amylose content of ric e starch. A g r i c . and Food Chem. 6 ( 1 ) : 4 7 - 4 8 . 113. W o o d r o f f , J. G ., W. E. DePree, and S. R. C e c i l . 1955Canning sweet p ot at oe s. Ga. A g r i c . Exp. Sta, B u i. No. N.S. 12. 60 p. 114. Woodward, Ralph St a n le y . 1946. A study o f the f a c t o r s a f f e c t ing q u a l i t y o f the cantaloupe and a comparison o f the q u a l i t y o f t h i r t y leading v a r i e t i e s under c o n d it io n s in North Louisiana. M. S. T h e s is . La. S t a t e Un iv. 44 p. 115. Yamaguchi, M., H. Timm, and R. A. Spurr. 1964. Effects of soil temperature on growth and n u t r i t i o n o f p o t a t o p l a n t s and t u b e r i z a t i o n , composition, and periderm s t r u c t u r e o f tu be rs . Proc. Amer. Soc. H o r t . S c i . 8 4 : 4 1 2 - 4 2 3 . 116. Yeatman, J. N. 1962. R e p o r t , p 35. 117. Zimmerly, H. H. 1934. The e f f e c t o f the N-P-K f e r t i l i z e r r a t i o on the shape o f the Porto Rico sweet p o t a t o . Proc. Amer. Soc. H o r t . S c i . 3 2 : 4 9 8 -5 0 1 . Na tion al qualityp. Acomparative Sweet Po tato Cooperative Group AUTOBIOGRAPHY H a rrell Lee Hammett was born a t Ru s to n in L i n c o l n P a r i s h , Lo ui si ana on September 3, tenant farm f a m i l y , 1925. He was reared as the o l d e s t son o f a educated in the el em ent ar y and secondary schools of L in co ln Pari sh and graduated from Choudrant High School He was d r a f t e d i n t o t h e U n i t e d S t a t e s Army I n f a n t r y 194-3 and served u n t i l A p ril, 1946. in May o f 1*942. in O c t o b e r , He is married to the former Emma Lee Boyd o f Choudrant, Louisiana and they are the parents of f ou r c h i l d ren, He en t er ed Lo u is i a n a P o l y t e c h n i c September o f 1947. 1951 w it h majors I n s t i t u t e , Ruston, Louisiana in He rec e iv e d a Bac hel or o f Science degree in June, in H o r t i c u l t u r e and Botany and a minor in Agronomy. He was employed by the United S t a t e s Department o f A g r i c u l t u r e , A g ric u ltu re M arketing Service, Processed Products Inspection and S t a n d a r d i z a t i o n as a processed food i n s p e c t o r working in Western Tennessee from August, 1953 to August, 1957. In August, 1957 he ac ce pt J ed a p o s i t i o n w i t h M i s s i s s i p p i S t a t e U n i v e r s i t y and A g r i c u l t u r a l E x p e r i ment S t a t i o n as A s s i s t a n t Pro fessor and A s s i s t a n t H o r t i c u l t u r i s t . was promoted to the A s so ci at e rank in June, In September, 1963 he was gra nt ed U n i v e r s i t y and A g r i c u l t u r a l Graduate School 19 6 1. leave from M is s is s ip p i S t at e Experiment S t a t i o n and r e - e n t e r e d the a t Lo u is ia na S t at e U n i v e r s i t y where he is p r e s e n tl y a can did ate f o r the degree o f Doctor o f Philosophy. 129 He EXAMINATION AND THESIS REPORT Candidate: H a r r e l l Lee Hammett Major Field: H o r t ic u l t u r e T itle o f Thesis: S tu d y o f th e I n h e r it a n c e o f R oot Shape, S k in C o lo r , T o t a l C a ro te n o id P ig m e n ts , D ry M a t t e r , F ib e r and B a k in g Q u a lit y in th e Sweet P o ta to (ipom oea b a ta ta s ) a Approved: .J&rv'LJLM ajor Professor and Chairm irmani—~ <3 Dean of the Graduate School E X A M IN IN G C O M M ITTE E : m g. Date of Examination: J u ly 1 6 , 3.965 __ /■
© Copyright 2026 Paperzz