STUDIES OF SURFACE PROPERTIES OF ICE USING NUCLEAR MAGNETIC RESONANCE Y. Mizuno, N. Hanafusa To cite this version: Y. Mizuno, N. Hanafusa. STUDIES OF SURFACE PROPERTIES OF ICE USING NUCLEAR MAGNETIC RESONANCE. Journal de Physique Colloques, 1987, 48 (C1), pp.C1-511-C1-517. <10.1051/jphyscol:1987170>. <jpa-00226316> HAL Id: jpa-00226316 https://hal.archives-ouvertes.fr/jpa-00226316 Submitted on 1 Jan 1987 HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. JOURNAL DE PHYSIQUE Colloque C 1 , supplgment au n o 3, Tome 48, mars 1987 STUDIES OF SURFACE PROPERTIES OF ICE USING NUCLEAR MAGNETIC RESONANCE Y. MIZUNO and N. HANAFUSA I n s t i t u t e o f Low Temperature S c i e n c e s , HoWraido U n i v e r s i t y , Sapporo 060, J a p a n R 6 s d - Des e e r i e n c e s de rdsonance magndtique nucldaixe pul&e ont dt6 f a i t e s sur des p e t i t e s particules de glace ayant un grand rapport surface/volume pour dtudier l a couche quasi liquide (Q.L.L.) 2 l a surface de l a glace. La &pendance avec l a t d r a t u r e des caract6ristiques IWN e t l e s propridtds dynamiques t e l l e s que l e temps de c o r r d l a t i o n pour l e mouvement de r o t a t i o n e t l e c o e f f i c i e n t d'auto-diffusion de l a Q.L.L. o n t 6td d d c r i t e s . La frdquence du mouvement moldcaaire rotationnel dans l e Q.L.L. e t l e coefficient d'autc-diffusion sont plus grands respectivement de 5 et 2 ordres de grandeur que dans l a glace en volume. Abstract - Pulsed nuclear mgnetic resonance studies were carried out on small i c e particles with large surface to volume ratios to investigate the so-called quasiliquid layer (Q.L.L.) on an i c e surface. The temperature dependence of features of the NMR spectra and dynamical properties such as the correlation time for rotational m t i o n and the self diffusion coefficient of the Q.L.L. were described. The frequency of the rotational mlecular m t i o n and the self diffusion coefficient were larger than those of bulk i c e by about five orders and by two orders, respectively. I. I n t r o d u c t i o n I t i s g e n e r a l l y a c c e p t e d t h a t a mobile p h a s e , t h e s o - c a l l e d q u a s i l i q u i d l a y e r ( Q . L . L . ) on an i c e s u r f a c e , p l a y s an i m p o r t a n t r o l e i n some phenomena which o c c u r a t t e m p e r a t u r e s n e a r below t h e m e l t i n g p o i n t , s u c h a s snow metamorphism, s i n t e r i n g , a d h e s i o n , a c c r e t i o n and c r y s t a l growth. Many s t u d i e s r e l a t e d t o t h e Q . L . L . have been c a r r i e d o u t i n t h e p a s t 30 y e a r s t o c l a r i f y i t s e x i s t e n c e and t h e d i s t i n c t i v e s u r f a c e p r o p e r t i e s of i c e . Nakaya (1) and Weyl ( 2 ) have i n t e r p r e t e d t h e a d h e s i o n observed between i c e s p h e r e s and r e g e l a t i o n i n terms o f mobile I l l i q u i d - l i k e " s u r face s t r u c t u r e s . J e l l i n e k ( 3 ) emphasized t h e e x i s t e n c e of t h e mobile phase b a s e d on e x t e n s i v e s t u d i e s on i c e adhesion and reviewed t h e s u r f a c e p r o p e r t i e s of i c e . On t h e o t h e r hand, F l e t c h e r ( 4 ) h a s shown t h e o r e t i c a l l y t h e e x i s t e n c e o f t h e p r o p e r s u r f a c e s t r u c t u r e and concluded t h a t a t temperat u r e s above about - 5 ' ~ t h e s u r f a c e of i c e i s covered by t h e Q.L.L., whose t h i c k n e s s i n c r e a s e s a s t h e temperature approaches O°C. D i r e c t evidence of t h e e x i s t e n c e of t h e Q . L . L . on i c e s u r f a c e s h a s been p r e s e n t e d by many i n v e s t i g a t o r s u s i n g v a r i o u s e x p e r i m e n t a l techn i q u e s : Photoemission by Nason and F l e t c h e r ( 5 1 , p r o t o n c h a n n e l l i n g by Golecki and J a c c a r d ( 6 ) and n u c l e a r magnetic resonance by Kvlividze e t a l . ( 7 1 , Anderson ( 8 ) , B e l l e t a 1 . ( 9 ) and Ocampo and K l i n g e r ( 1 0 ) . A r e c e n t e l l i p s o m e t r i c a l s t u d y by Furukawa e t a l . ( l l ) provided det a i l e d i n f o r m a t i o n on t h e t h i c k n e s s and r e f r a c t i v e i n d e x of t h e l a y e r T h e i r r e s u l t s on and i t s dependence on t h e c r y s t a l l o g r a p h i c s u r f a c e . t h e c r y s t a l l o g r a p h i c s u r f a c e s u p p o r t t h e t h e o r e t i c a l t r e a t m e n t of t h e Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1987170 JOURNAL DE PHYSIQUE C1-512 growth k i n e t i c s o f i c e from t h e vapor phase p r e s e n t e d by Kuroda and Lacmann ( 12 ) I n f o r m a t i o n on t h e dynamical p r o p e r t i e s o f t h e Q.L.L., its d i f f e r e r e n c e from bulk i c e o r i t s " l i q u i d - l i k e v f e a t u r e , i s important t o und e r s t a n d t h e above-mentioned snow and i c e phenomena which a r e c l o s e l y r e l a t e d t o the surface properties of ice. . I n t h i s c o n n e c t i o n , t h i s p a p e r d e s c r i b e s t h e dynamical p r o p e r t i e s of t h e Q.L.L., t h e c o r r e l a t i o n time f o r r o t a t i o n a l molecular motion and t h e s e l f d i f f u s i o n c o e f f i c i e n t i n t h e Q.L.L. u s i n g p u l s e d n u c l e a r magne t i c resonance. . 11. Experimental Procedures I n o r d e r t o o b t a i n t h e NMR s i g n a l due t o i c e s u r f a c e s , s m a l l i c e p a r t i c l e s o f l e s s t h a n 150 pm i n diameter were p r e p a r e d a t -30°C by f r e e z i n g supercooled water d r o p l e t s s p r a y e d o u t from a n atomizer on a clean t e f l o n sheet. The p a r t i c l e s were p u t i n t o a g l a s s c e l l f o r t h e NMR s p e c t r o s c o p y . To p r e v e n t s i n t e r i n g between i c e p a r t i c l e s , t h e g l a s s c e l l was s t o r e d i n a c o l d chamber whose temperature was k e p t below -80°C. T h e NMR measurements were made u s i n g a JEOL FXlOONMR s p e c t r o s c o p e eqyipped w i t h a s p i n l o c k i n g u n i t and a temperature c o n t r o l l i n g u n i t and o p e r a t e d a t 100 MHz. The temperature o f a sample was c o n t r o l l e d with an accuracy o f * O.l°C, and f o r thermal e q u i l i b r i u m , every measurement performed a t a c e r t a i n temperature w a s s t a r t e d a f t e r keeping t h e sample f o r more t h a n 30 minutes a t t h a t temperature. To o b t a i n t h e temperature dependence on both t h e i n t e n s i t y and t h e l i n e w i d t h , most of t h e measurements were made i n t h e p r o c e s s o f t h e temperature r i s i n g from - 1 0 O 0 C t o -5°C. S p i n l a t t i c e r e l a x a t i o n time T I and t h a t i n a r o t a t i n g frame T I P were measured by t h e i n v e r s i o n recovery and t h e s p i n l o c k i n g methods, respectively. 111. R e s u l t s 1. NMR s i g n a l due t o s u r f a c e mobile phase Figure 1 shows NMR s p e c t r a f o r t h e s u r f a c e mobile phase accumulated 200 times a t t h e v a r i o u s temp e r a t u r e s observed a t 9 9 . 5 MHz, t h e broad s i g n a l due t o c r y s t a l l i n e i c e i s n o t s e e n w i t h i n t h e range o f o b s e r v a t i o n a l frequency o f 20 kHz. The narrow s i g n a l was n o t d e t e c t e d a t any t e m p e r a t u r e when only bulk i c e was u s e d , and t h e s i g n a l s a p p e a r i n g i n Fig. 1 were thought t o be caused by a mobile phase a t an i n t e r f a c e between a i r and c r y s t a l l i n e i c e and/or a t g r a i n boundaries. A s i s obvious i n t h e f i g u r e , t h e l i n e width and t h e i n t e n s i t y v a r y w i t h temperature. I t should be noted t h a t t h e l i n e width of t h e spectrum a t -lO°C is about 7 t i m e s t h a t o f o r d i n a r y water a t +5OC, which i s shown f o r comparison on t h e l e f t hand s i d e . The i n t e n s i t y o f t h e spectrum i s p r o p o r t i o n a l t o t h e number of t h e mobile molecules. The r e l a t i v e i n t e n s i t y , which i s normalized w i t h t h e i n t e n s i t y a t -5"C, and t h e l i n e width v a r i a t i o n w i t h temperature a r e shown i n Fig. 2 . A s the s u r f a c e a r e a was reduced by s i n t e r i n g i n o u r experiment, t h e i n t e n s i t y , Although t h e r e l a t i v e e s p e c i a l l y a t -5OC, i s expected t o be l a r g e r . i n t e n s i t y l a r g e l y changed between -5OC and -lO°C, l i n e width v a r i a t i o n was q u i t e s m a l l . 2. S p i n - l a t t i c e r e l a x a t i o n time(T1) The s p i n l a t t i c e r e l a x a t i o n t i m e , TI, was measured by t h e i n v e r s i o n recovery method a t v a r i o u s temperatures. Figure 3 shows t h e r e l a t i o n s between TI and t h e temperature f o r powder i c e p a r t i c l e s and a r e f r o z e n i c e , where each p o i n t i s an av- e r a g e o f t h r e e t i m e s measurements i n b o t h c a s e s . The r e f r o z e n i c e was made by m e l t i n g t h e powder i c e s l i g h t l y w i t h i n t h e c e l l and t h e r e a f t e r f r e e z i n g i t r a p i d l y a t below - 3 0 ' ~ . Microscopical observation reveale d t h a t a l a r g e number o f t i n y b u b b l e s s e v e r a l 10 pm i n d i a m e t e r were d i s p e r s e d u n i f o r m l y i n t h e sample. Figure 1. NMR spectra of the Q.L.L. observed a t 99.5 MHz. Signal of liquid water was taken a t +5OC. Notice the difference in the line w i d t h between liquid water and the Q.L.L. Figure 2. Intensity(so1id l i n e ) and line w i d t h variation(dotted l i n e ) w i t h temperature The v a r i a n c e i n TI between t h e two samples r e f l e c t s some o f t h e dynamical d i f f e r e n c e s e x p e c t e d t o be c a u s e d mainly by w a t e r vapor p r e s s u r e around t h e i n n e r and t h e o u t e r s u r f a c e s . However, T I minimum a p p e a r e d around -35OC i n b o t h samples. The s p i n l a t t i c e r e l a x a t i o n time T I f o r p r o t o n i s e x p r e s s e d i n t h e f o l l o w i n g form ( 1 3 ) , where, w, = F Ho i s t h e r e s o n a n t f r e q u e n c y , 7f i s t h e gyromagnetic r a t i o , r i s t h e s p i n t o s p i n d i s t a n c e and Z i s t h e c o r r e l a t i o n time f o r r o t a t i o n a l m o l e c u l a r motion. The c o r r e l a t i o n t i m e a t - 3 5 O ~ was e v a l u a t e d t o be 9 . 6 x 1 0 - ~ ~ s e from c t h e c o n d i t i o n t h a t T i i s minimum f o r woZ i s a b o u t 0.6. Using t h i s c o r r e l a t i o n t i m e , t h e s p i n t o s p i n d i s t a n c e , r , was e v a l u a t e d t o be a b o u t 1 . 6 6 ~ 1 0 - l o m and 1 . 4 1 ~ 1 0 - m~ ~f o r powder and refrozen i c e , respectively. Assuming r d o e s n o t change w i t h temperat u r e , ~a t e a c h t e m p e r a t u r e c a n be o b t a i n e d by s u b s t i t u t i n g t h e c o r r e sponding T1 i n t o e q . ( 1 ) . I n t h i s c a s e , woz<<1 i s r e a s o n a b l y c o n s i d e r e d a t h i g h e r t e m p e r a t u r e s and wof;) 1 a t lower t e m p e r a t u r e s compared t o t h e minimum p o i n t g i v e n i n F i g . 3. Figure 4 i l l u s t r a t e s the c o r r e l a t i o n time a t v a r i o u s temperatures, where t h e v a l u e a t O°C was c a l c u l a t e d by u s i n g T i a t o0C, which was o b t a i n e d by e x t r a p o l a t i n g s e v e r a l p o i n t s a t lower t e m p e r a t u r e s . JOURNAL DE PHYSIQUE a: powder ice(o) b: refrozen ice(.) 0 C 0 Figure 3 . Spin l a t t i c e relaxation time, T I , VS. inverse temperature activation energy a: 28.0 k~.mol.' Figure 4. Correlation time for rotationa l motion, Z , vs. inverse temperature The d i f f e r e n c e i n T f o r powder and r e f r o z e n i c e i s c o n s i d e r a b l y l a r g e n e a r t h e m e l t i n g p o i n t ; however, i t d e c r e a s e s a s t e m p e r a t u r e f a l l e s , and below -15OC, b o t h samples become a l m o s t e q u a l . The a c t i v a t i o n energy f o r r o t a t i o n a l motion was 28.0 kJ/mol f o r powder i c e and 59.7 kJ/mol f o r r e f r o z e n i c e i n t h e t e m p e r a t u r e range o f 0 t o -50°C and 0 t o -15OC, r e s p e c t i v e l y . A s i s shown i n F i g . 4 , t h e c o r r e l a t i o n time o f t h e Q . L . L . i s i n t h e o r d e r o f 1 0 -I0 s e c , which i s much c l o s e r t o t h a t o f w a t e r o f 10-l2 s e c (14) than t h a t of i c e c r y s t a l of sec(l5). A s compared w i t h t h e c o r r e l a t i o n time of t h e Q . L . L . a t O°C and t h a t o f o r d i n a r y w a t e r , t h e Q.L.L. i s movable w i t h a f r e q u e n c y o f about 1 / 2 5 o f t h a t i n o r d i n a r y w a t e r a t O°C. 3. D i f f u s i o n c o e f f i c i e n t For p r o t o n , whose n u c l e u s p o s s e s s e s s p i n 1 / 2 , t h e s p i n l a t t i c e r e l a x a t i o n time i n a r o t a t i n g f r a m e , T l p , i s r e l a t e d t o w l , t h e r a d i o f r e q u e n c y , and D , t h e s e l f d i f f u s i o n c o e f f i c i e n t , a s follows ( 1 6 ) : where N i s t h e number d e n s i t y o f r e s o n a n t n u c l e i . A s i s obvious i n eq. (21, i n p l o t t i n g l / T l p v s . ~ $ 1 2 ,t h e s l o p e g i v e s a s e l f d i f f u s i o n c o e f f i c i e n t , D. A t y p i c a l r e s u l t a t -lO°C i s shown i n F i g . 5. We o b t a i n e d t h e s e l f d i f f u s i o n c o e f f i c i e n t a t t e m p e r a t u r e s between -1.5"C and-20°C. TheresultsarelistedinTable 1, whereeveryvalueis a n a v e r a g e of t h r e e measurements a t e a c h t e m p e r a t u r e . A c t i v a t i o n e n e r g y f o r d i f f u s i o n by t r a n s l a t i o n a l motion was e v a l u a t e d t o be 2 3 . 5 kJ/mol a s i s shown i n F i g . 6 . F o r comparison, t h e d i f f u s i o n c o e f f i c i e n t i n a s i n g l e c r y s t a l by I t a g a k i ( l 7 ) , i n p o l y c r y s t a l l i n e i c e by Kuhn and T h i i r k a u f ( l 8 ) and i n w a t e r ( l 4 ) a r e a l s o shown i n t h e same f i g u r e . The a b s o l u t e v a l u e of t h e d i f f u s i o n c o e f f i c i e n t o f t h e Q.L.L. i s a b o u t f o u r o r d e r s of magnitude s m a l l e r t h a n t h a t o f w a t e r ; however, i t i s remarkable t h a t t h i s v a l u e i s l a r g e r than t h a t of a s i n g l e c r y s t a l of i c e by two o r d e r s . I n r e g a r d t o t h e a c t i v a t i o n e n e r g y f o r d i f f u s i o n , t h a t of t h e Q.L.L. i s s l i g h t l y l a r g e r t h a n t h a t of l i q u i d w a t e r b u t i s o n l y a b o u t a t h i r d of a s i n g l e c r y s t a l of i c e . Temperature Table 1 Diffusion c o e f f i c i e n t *rat*, (5-2O.C) D - Z ~ ~ O - * rnlsec" 18.9 rJ. moi' '.,'. '., single crystd(ref.17) 63.1 kI.mol1 (065eV) Figure 5. Tlpvariation with radio frequency at -lO°C; plotted 1/Tlp vs. w:/* IV. Figure 6. Diffusion coefficient of the Q.L.L. vs. inverse temperature Discussion and Conclusion The i n t e n s i t y o f t h e NMR s i g n a l was l a r g e l y dependent on t h e p a r t i I n f a c t , i n o u r experiment u s i n g i c e p a r t i c l e s l a r g e r than cle size. 200 pm i n d i a m e t e r , t h e s i n g n a l was small and f a i n t even a t -lO°C. However, t h e s i z e of an i n d i v i d u a l c r y s t a l i n an i c e p a r t i c l e was mostl y independent of t h e p a r t i c l e s between 50 and 500 pm i n d i a m e t e r . Therefore t h e NMR s i g n a l i s c o n s i d e r e d t o be due mainly t o i n n e r o r o u t e r f r e e s u r f a c e s and t h e c o n t r i b u t i o n from g r a i n . b o u n d a r i e s seems t o Undoubtedly, t h e e x i s t e n c e of t h e mobile water be s m a l l i n t h i s c a s e . phase a t g r a i n boundaries a t v e r y c l o s e t o t h e m e l t i n g p o i n t h a s been shown by Ohtomo and Wakahama(l9). F u r t h e r s t u d i e s a r e needed t o c l a r i f y t h e d i f f e r e n c e between t h e dynamical p r o p e r t i e s of a f r e e s u r f a c e and of a g r a i n boundary, because molecules a t t h e g r a i n boundary a r e expected t o have a h i g h e r c r y s t a l l i n i t y t h a n t h o s e i n a f r e e s u r f a c e . A s t h e s u r f a c e a r e a d e c r e a s e s due t o s i n t e r i n g between i c e part i c l e s , t h e i n t e n s i t y v a r i a t i o n w i t h temperature does n o t correspond t o Regardless o f t h e t h i c k n e s s v a r i a t i o n o f t h e Q.L.L. w i t h t e m p e r a t u r e . C1-516 JOURNAL D E PHYSIQUE t h e l a r g e v a r i a t i o n o f t h e i n t e n s i t y between -5OC and -lO°C, t h e l i n e width d o e s n o t change v e r y much. This f a c t suggests t h a t t h e thickn e s s o f t h e Q.L.L. changes l a r g e l y w i t h i n t h i s t e m p e r a t u r e range ; however, v e r y s m a l l changes o c c u r i n t h e dynamical p r o p e r t i e s . I n o u r e x p e r i m e n t , t h e NMR s i g n a l due t o t h e mobile molecules a t t h e s u r f a c e was observed even a t a t e m p e r a t u r e o f a s low a s - l O O ° C . This f i n d i n g i n d i c a t e s t h a t some s u r f a c e molecules can r o t a t e a t a much h i g h e r f r e q u e n c y t h a n i n b u l k i c e even a t - l O O e C , however, i t should n o t be c o n s i d e r e d t h a t t h e Q.L.L. s t i l l remains a t such a low temperature. The number o f mobile m o l e c u l e s is dependent n o t o n l y on t h e temp e r a t u r e b u t a l s o on t h e degree of t h e p e r f e c t i o n and t h e c r y s t a l l o g raphic o r i e n t a t i o n of the surface. Our r e s u l t d i f f e r s l a r g e l y from t h e e l l i p s o m e t r i c a l o b s e r v a t i o n (11) o f t h e t e m p e r a t u r e a t which t h e mobile phase a p p e a r s . The d i f f e r e n c e i s c a u s e d mainly by t h e d i f f e r ence i n t h e power o f d e t e c t i o n o f each e x p e r i m e n t a l method t h a n by t h e d i f f e r e n c e i n t h e sample. The q u e s t i o n "how many mobile m o l e c u l e s make t h e s u r f a c e v e r y l i q u i d - l i k e ?I1 can n o t be answered from t h e r e s u l t s o f o u r experiment u s i n g NMR; however, t h i s method does p r o v i d e i n f o r m a t i o n on t h e s u r f a c e molecule motion. I t was found t h a t t h e m o l e c u l e s a t t h e s u r f a c e r o t a t e a t a f r e quency o f about f i v e o r d e r s l a r g e r t h a n t h a t o f c r y s t a l l i n e i c e a t t e m p e r a t u r e s between 0 t o -20°C, and t h i s f r e q u e n c y c o r r e s p o n d s t o only a b o u t 1 / 2 5 o f t h a t o f a molecule i n l i q u i d w a t e r . Regarding d i f f u s i o n by t h e t r a n s l a t i o n a l motion, t h e s u r f a c e molec u l e d i f f u s e s a t a r a t e o f a b o u t two o r d e r s l a r g e r t h a n t h a t i n b u l k ice. I t can be concluded t h a t t h e s u r f a c e molecule p o s s e s s e s some p r o p e r t i e s which a r e much c l o s e r t o t h o s e o f l i q u i d w a t e r t h a n t o t h o s e o f c r y s t a l l i n e i c e , b u t t h e y a r e a p p a r e n t l y d i f f e r e n t from t h o s e of l i q u i d w a t e r even a t t e m p e r a t u r e s v e r y c l o s e t o t h e m e l t i n g p o i n t . The a c t i v a t i o n e n e r g y b o t h f o r t h e r o t a t i o n a l and t h e t r a n s l a t i o n a l motion o f t h e s u r f a c e molecule a p p e a r t o be l o c a t e d between t h o s e o f l i q u i d w a t e r and c r y s t a l l i n e i c e . References Nakaya,U. and Matsumoto,A. U.S.Army Snow,Ice and P e r m a f r o s t Res. R e p t . , 4 (1953) pp 1-6 Wey1,W.A. J.Colloid S c i . , 6 (1951) 389-405 Jellinek,H.H.G. J . C o l l o i d a n 3 I n t e r f a c e S c i . , 25 (1967) 192-205 Fletcher,N.H. P h i l . Mag., 18 (1968) 1 2 8 7 - 1 z 0 Nason,D. and F l e t c h e r , N . H . J.Chem.Phys., 62 ( 1 9 7 5 ) 4444-4449 G o l e c k i , I . and J a c c a r d , C . J.Phys. C : S o l i d S t a t e Phys., 11 (1978) 4229-4237 Kvlividze,V.I.,Kiselev,V.F., Kurzaev,A.B. and Ushakova,L.A. Surface S c i . , 9 (1974) 60-68 Anderson,D.M. CRREL Res.Rept., No. 274 (1970) pp 1-17 Bell.J.D.,Mvatt,R.W. and Richards,R.E. Nature, P h y s i c a l S c i . , 239, . 22 . ( i 9 7 i j 91-92 Ocampo,J. and K l i n g e r , J . J.Phys. Chem., 87 ( 1 9 8 3 ) 4325-4328 Furukawa,Y., Kuroda,T. and Yamamoto,M. J.>e Physique, This . issue (1987) Kuroda,T. and Lacmann,R. J . C r y s t a 1 Growth, 56 (1982) 189-205 Abragam,A. i n " The P r i n c i p l e o f Nuclear ~ a g n e E cResonancet1 Oxford a t t h e Claremdon P r e s s . (1961) E i s e n b e r g , D . and Kauzmann,W. i n The S t r u c t u r e and P r o p e r t i e s o f Water Oxford Univ. P r e s s . (1969) Auty,R.P. and Cole,R.H. J.Chem.Phys., 20 (1952) 1309-1314 B u r n e t t , L . J . and Harmon,J.F. J.Chem.phy= 57 ( 1 9 7 2 ) 1293-1297 Itagaki,K. J.Phys.Soc.Japan, 2 (1967) 427-431 Kuhn,W. and Thurkauf,M. Helv. Chim. A c t a , 2 (1958) 938-971 Ohtomo,M. and Wakahama,G. J.Phys.Chem., 87 (1983) 4139-4142 - COMMENTS E. OFFENBACHER Can you estimate the thickness of the Q.L.L. signals and your sample parameters ? from the relative intensity of your Answer : Yes I can estimate the thickness of the Q.L.L. by assuming the specific surface area, but in our experiment, especially at higher temperature (-5OC and -lO°C), the surface area reduces by sintering during experiment and further correction is required. P. PISSIS I think, it is important for such measurements to have a large surface/volume ratio. I wonder, in this connection, why you don't use emulsified water droplets where you can easily get droplets of a fewrm in diameter. Is any reason for not using such systems ? Answer : To obtain the MNR signal due to ice surface, the sample with the larger surface/volume ratio is the better. However the purpose of our study is to know the properties of the quasi-liquid layer between air and crystalline ice. So we used rather large ice particle but with free outer surface. P.L.M. PLUMMER I am very pleased to see your very nice results. My interpretation of your results suggest that since the rotational times of the quasi liquid layer are very similar to those of liquid water but the diffusion times are between those of liquid and solid suggest the layer can also be described as quasi-solid amorphous layer with a high concentration of defects, no long range order and a high degree of rotational freedom. Do you agree and could you amplify on your opinion of the structure of this layer implied by your data ? Answer : Yes. I agree with you basically. We assume that diffusion takes place with molecular unit and we evaluated the spin to spin distance to be about 4 8, so some crystalline structure is expected to be remained in the quasi-liquid layer. Remark of J.W. GLEN : Relative to Dr PLUMMERrs comment, the values of D at 10-l2 m2 l's are about half way between those of water ( N 10-9 m2 s-l) and ice and the activation energy is more like that of water. from this paper m2 s-'1, ( N 10-l5
© Copyright 2026 Paperzz